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Abstract—We investigate predictive models for robot ego-noise
learning and imitation. In particular, we present a framework
based on internal models—such as forward and inverse models—
that allow a robot to learn how its movements sound like, and
to communicate actions to perform to other robots through
auditory means. We adopt a developmental approach in the
learning of such models, where training sensorimotor data is
gathered through self-exploration behaviours. In a simulated
experiment presented here, a robot generates specific auditory
features from an intended sequence of actions and communicates
them for reproduction to another robot, which consequently
decodes them into motor commands, using the knowledge of its
own motor system. As to the current state, this paper presents
an experiment where a robot reproduces auditory sequences
previously generated by itself. The presented experiment demon-
strates the potentials of the proposed architecture for robot
ego-noise learning and for robot communication and imitation
through natural means, such as audition. Future work will
include situations where different agents use models that are
trained with—and thus are specific to—their own self-generated
sensorimotor data.

I. INTRODUCTION

Ego-noise—the auditory noise that an agent produces while
moving around—is usually considered as a negative feature
in robot audition that needs to be cancelled or removed
[1], [2]. Indeed, ego-noise disturbs the auditory input signals
captured from the microphones, and can severely decrease
the performance of a speech recogniser or of a sound source
localiser. However, as we investigated in previous works [3]–
[5], robot ego-noise does not only have a negative impact in
robot audition. In fact, it can carry out very useful information,
such as about the movements that the robot is executing and
about characteristics of its surrounding environment.

In a previous study [5], we proposed a biologically in-
spired model for coding internal body representations that can
generate predictions of auditory and motor experience in a
humanoid robot, and we demonstrated how such ego-noise
predictions can allow the implementation of basic cognitive
skills. In fact, we observed that being able to estimate self-
induced changes in the auditory signal is crucial both for
attenuating ego-noise, and thus for enhancing the auditory
signal for further processing such as speech recognition, but
also for distinguishing ego-noise from other sounds in natural
acoustic environments, which is a prerequisite for efficient and

intuitive interaction with other people and with the surrounding
[5].

Similarly, in [3], we implemented predictive forward models
[6], [7] as computational tools for encoding the dynamics of
the motor system of a custom mobile robotic platform and the
effect of self-produced movements on the perceived ego-noise.
We tested the predictive capabilities of the models in two
experimental settings: first, we demonstrated that ego-noise
predictions can be used for classifying velocity profiles from
auditory signals the robot is listening to; second, we showed
how the auditory predictions can be used also to detect changes
in the external environment. As an example, we demonstrated
how the robot could detect a change in the inclination of the
surface where it was moving around.

In the aforementioned studies [3], [5], we represented
the ego-noise produced by the robot movements using Mel-
frequency Cepstral Coefficients (MFCCs), which are features
derived from a type of cepstral representation of the auditory
signal commonly used in speech recognition [8], as well as
for music classification [9]. In a following work [4], we in-
vestigated the adoption of Convolutional Autoencoders (CAEs
[10]) for semi-supervised feature learning of the auditory
signals1, as an alternative to MFCCs. Moreover, we proposed
an implementation of an inverse model for encoding the
mapping between the auditory noise and the motor commands
that generated it, in the context of an imitation experiment.
We carried out two experiments [4]. In a first imitation test,
we recorded the ego-noise of a mobile robotic platform while
it was performing a predefined set of command sequences.
After having trained the inverse models, the robot was asked to
reproduce the movements it previously performed by inferring
the motor commands from the auditory information. During
the prediction phase, the inverse model was fed with auditory
features generated through a Convolutional Autoencoder and
with the current robot sensory state. In a second test, the robot
imitated the movements from listening to a prerecorded noise
reproduced by a loudspeaker.

It has to be noted that the models presented in [3]–[5]
were all trained with data generated through a self-exploration

1We implemented the CAE using Keras (https://keras.io/) and Theano
(https://github.com/Theano/Theano) libraries.



behaviour, namely motor babbling, which is inspired by a
behaviour exhibited by infants during early developmental
stages. Through self-exploration, infants gather knowledge
about their body capabilities and acquire coordination skills
[11], [12]. Self-exploration is an essential behavioural compo-
nent for the acquisition of sensorimotor experience in robots
as well, and thus for the autonomous formation of internal
models and body representations [7].

This work represents a follow-up of the studies described
above [3]–[5]. Similarly, here we investigate the learning
of predictive internal models—of both inverse and forward
models, as in the classic framework for motor control [6]—
in a custom robotic platform (see Figure 1). Following the
same developmental approach, we equip the robot with a
simple self-exploration behaviour, namely random babbling2,
for the autonomous generation of auditory and motor training
samples.

These training samples are used here to train four models:
(1) a Convolutional Autoencoder, for semi-supervised feature
learning of the auditory signals; (2) an inverse model, for
encoding the controller of the robot, which maps initial
sensory states (wheels speed, wheels differential speed and
last executed motor commands) and auditory features with the
motor command that produced that specific auditory signal;
(3-4) two forward models, each mapping the initial sensory
state of the robot and the applied motor command onto two
resulting sensory outcomes (3): the produced auditory signal,
encoded with the CAE; (4): the resulting velocities of the robot
wheels.

In [4], a CAE was adopted to compress auditory signals
into a feature vector, and for inferring through an inverse
model the motor commands that generated that specific ego-
noise. It was argued that such an approach could allow
for basic imitation behaviours, where a robot listening to
a specific ego-noise could reproduce the same action (if
produced by an agent with similar embodiment). A sim-
ilar study on autoencoders and sensorimotor learning was
presented in [13], although on a classical navigation task.
Winfield and Erbas [14] discussed robot-robot imitation of
movements, sounds and lights. Here, we extend the previous
work by investigating the generative capabilities of the adopted
models. In fact, the joint action of the forward model and
the Convolutional Autoencoder allows the robot to generate
a specific ego-noise without actually performing the action.
This would, for instance, enable a robot to communicate to
another robot a determined sequence of actions to perform,
through auditory means. In the experiment presented here,
we simulate the condition where a robot A communicates
through auditory means an intended sequence of actions to
a robot B, which subsequently decodes the received ego-noise
into specific motor commands through its own inverse model
(see figure 2). It can be argued that motor commands can be
transmitted in robot through other means, such as wireless

2More efficient exploration strategies have been proposed in the literature
(see [7] for a review).

communication. However, the scope of this work is not to
find the best solution for robot communication per se, rather
to show that brain inspired computational models can serve
as a prerequisite for communication and imitation, in the
particular complex problem of auditory communication. Sound
transmission for imitation purposes can seem quirky and prone
to dangerous interferences, especially in presence of small me-
chanical differences in the robots’ motors. Humans are highly
performant in communication and imitation processes using
auditory means (i.e. musicians’ skill in coordinated play), even
when the embodiment’s characteristics between individuals or
between the tools they are using (e.g. music instruments) are
highly different. This work aims at providing insights in the
understanding of auditory imitation processes, and it focuses
on ego-noise as a sample source of auditory information.
Moreover, we strongly believe that studying sensorimotor
development in the context of robot audition and ego-noise
is very relevant for the ICDL-EpiRob community, ego-noise
being a result of the particular embodiment of a robot and
of the environment it interacts with. Currently, as it will be
discussed later in the paper, this capability has been tested
only with forward and inverse models trained on the same
sensorimotor dataset gathered from a single robot. Thus, the
imitation experiment is just a simulation of a communication
between two robots, which here are simply the same robots
with the same internal models. We are currently carrying
out an experiment, not yet reported here, where each of the
robots utilises its own forward and inverse models and CAE,
that is where it uses models that are trained with—and thus
are specific to—their own self-generated sensorimotor data.
Nonetheless, the presented experiment already demonstrates
the potentials of the proposed architecture for robot ego-noise
learning and for robot communication and imitation through
natural means, such as audition.

The rest of the paper is structured as follows. In section
II, we introduce the methodology behind this work. We then
describe the experiment in section III and present the results
of this work in section IV. Finally, we conclude the work in
section V where we depict our future steps in this research.

II. METHODOLOGY

This section describes the methodology adopted in this
work.

A. Robotic platform

We used a wheeled robot [4] developed at the Adaptive
Systems Group at the Computer Science Department of the
Humboldt-Universität zu Berlin (Figure 1).

The robot is equipped with two DC gear motors placed
in a differential configuration, as well as a microphone for
audio recording. Their characteristics are slightly different
from the ones of the platform developed in [4]. In particular,
we adopted here more resistant and powerful motors (Pololu
Metal Gearmotor 25Dx52L) and a better microphone (RODE
SmartLav+).



Fig. 1. The wheeled robot developed for the experiment.

Each motor has attached a quadrature magnetic encoder in
order to provide a speed feedback to the system (we used the
number of encoder counts made in a range of 100ms as a
velocity measure). ROS (Robot Operating System) has been
used for software development.

B. Ego-noise representation

As in [4], we implemented a semi-supervised learning
process to represent auditory features, by means of a Con-
volutional Autoencoder [10].

An autoencoder is a neural network that tries to reconstruct
its input [15], and is composed of two components: an
encoder, which compresses the input into a feature vector
of lower dimensionality, and a decoder, which reconstructs
the input from the compressed vector. Learning processes in
autoencoders are designed in a way that they generate features
that store only useful properties of the data [4], [15].

C. Model Architecture

Figure 2 depicts the model architecture behind the exper-
iment presented in the following section. In particular, the
architecture is mainly composed of four models:
(1) A convolutional autoencoder adopted for compressing

auditory signals into auditory features, and for decoding
them back into auditory signals.

(2) An inverse model for mapping the initial sensory state
of the robot (wheels velocity) and a feature vector en-
coding an auditory chunk, into the motor command that
generated such an ego-noise.

(3) A forward model mapping the initial sensory state of the
robot and the motor commands applied to the wheels,
into the resulting auditory features.

(4) A forward model mapping the initial sensory state of the
robot and the motor commands applied to its wheels, into
the resulting new velocity of the wheels.

The forward model (4) has been implemented in order to
allow long-term predictions. In fact, as depicted in figure 2,
the output of the forward model (4) is fed back to the forward
model (3) at the following time step. This allows the execution
of further auditory predictions, and thus the generation of
sounds from intended sequences of movements. The forward
and inverse models are implemented as Multilayer Percep-
trons.

Figure 2 shows how the framework can be used for an
imitation experiment. In particular, we investigate the gen-
erative capabilities of the adopted models. In fact, the joint

action of the forward model and the convolutional autoencoder
allows the robot to generate a specific ego-noise (or a sequence
of ego-noise chunks, where wheel speed predictions are fed
back in a loop into the same forward model) without actually
performing the action.

Figure 2 also illustrates how a robot can communicate to
another robot a determined sequence of actions to perform,
through auditory means. Forward model predictions, in the
form of auditory features, can be restored as FFT signals
through the decoder of the CAE and eventually re-transformed
into auditory signals to be reproduced by a loudspeaker. A
second robot could thus listen to the generated noise, transform
it back—through its encoder—into an auditory code, and esti-
mate the intended motor commands through its inverse model.
In the experiment presented here, we simulate the condition
where a robot A communicates through auditory means an
intended sequence of actions to a robot B, which subsequently
decodes the received ego-noise into specific motor commands
through its own inverse model.

Currently, this capability has been tested only with forward
and inverse models trained on the same sensorimotor dataset
gathered from one single robot. Thus, the imitation experiment
is just a simulation of a communication between two robots,
which have the same internal models. We are currently carry-
ing out experiments where two different robots use internal
models trained with each own self-generated sensorimotor
data.

III. EXPERIMENT

The experimental setup consists of the wheeled robot de-
picted in Figure 1 performing movements in a rectangular
arena (1.8 m x 1.0 m) made of a flat wooden floor and
cardboard walls. In particular, we used the same training
procedure adopted in our previous work [4], as described in
the following.

We report here the description of the data collection process.
During the learning phase, the robot executed five different
random babbling behaviours:

1. A random motor command is sampled from a uniform
distribution (range [0, 10], i.e. only positive values, that is
forward movements) and applied equally to both wheels.
The same command is executed every 150 milliseconds
for n iterations. n is sampled from a uniform distribution
(range [1, 15]).

2. Exploration behaviour (1) is applied only to the left
wheel. The right wheel is kept on hold (null speed).

3. Exploration behaviour (1) is applied only to the right
wheel. The left wheel is kept on hold (null speed).

4. Exploration behaviour (1) is applied to both wheels. At
each iteration, a different value is sampled for each motor.

5. Both wheels are stopped, producing silence.
Each behaviour was executed 5000 times, resulting in

25,000 samples.
During the exploration behaviours, auditory signals were

recorded with the embedded microphone RODE SmartLav+.
The input signal was captured at a frequency rate of 22,050
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Fig. 2. The forward models architecture (Autoencoder (1), inverse model (2), ego-noise forward model (3), speed forward model (4)), characterised by the
following input and output variables. S: Sensory state at time {t}, composed of the velocity V at time {t}, the differential of the velocity (between time {t}
and time {t-1}) and the motor command applied at time {t-1}. A sensory state is read for both wheels: left (l) and right (r). M: Motor command applied at
time {t} to both wheels: left (l) and right (r). V: Velocity of the left wheel (l) and the right wheel (r). When V is the output of the forward model, than it is
related to the time step {t+1}. Ego-Noise (FFT): a Fast Fourier Transform (FFT) operator has been applied to each 2048 samples auditory chunk, resulting
in a vector of 1025 values. Feature vector: The compressed vector from the latent space of the Conditional Autoencoder

Hz. In particular, we recorded 2048 samples every 150 mil-
liseconds. After every recording there was a pause of 50ms.
This time is needed for the robot to calculate the output of
the models when is used in real time. We adopted the same
auditory, motor and proprioceptive synchronisation framework
developed in [3] and [4]. A Fast Fourier Transform (FFT)
operator has been applied to each 2048 samples auditory
chunk, resulting in a vector of 1025 values.

The gathered data was then used to train a Convolutional
Autoencoder characterised by a latent space dimensionality of
5. This means that the CAE is capable of compressing a chunk
of 1025-dimensional FFT vector into a vector of 5-dimensions.

The 25000 samples dataset was also used for training the
inverse and forward models. Further 4500 samples, generated
through the aforementioned exploration behaviours (randomly
chosen), were collected for the testing phase.

The tests consisted in the following procedure. We want
Robot A to communicate an action to perform to Robot B
through auditory means.

In order to generate the auditory data to be sent to robot
B, we took the motor command sequences from the recorded
test samples, and used them as the intended motor sequence
to transmit. This command sequence was then fed into the
robot A forward models (see Figure 2) to infer the new
motor speed and auditory states. In the initial first step, the
values of the current speed, the differential speed and the
previous motor command of both motors were set to zero.
These data, together with the motor command taken from
the test sequence, were fed into the Robot A ego-noise (3)
and velocity (4) forward models (see figure 2). The output of
the models is the ego-noise feature vector and speed of the
motors that would result if the input motor commands were
executed. The simulated sensory state (speed, differential of
speed) along with the executed motor command were then
fed back into the Robot A forward models, as well as the next

motor command that would be executed in the test sequence.
This process was repeated until the 4500 motor commands
were simulated. Through this process, we generated a series
of 4500 auditory features. In the next step, we sent them to
robot B.

The first step for communicating the information to robot B
consisted in decoding the auditory feature vector, by using the
decoder part of the pre-trained CAE. We thus obtained a series
of 1025-dimensional chunks consisting of the magnitude of
the FFT chunks. To generate the ego-noise signals in the time
domain, we applied an inverse FFT operator, using random
numbers from −π to π as the phase vector. In order to simulate
loss of fidelity in the transmission of the signal, we added
random gaussian noise with a standard deviation of 0.1 times
the standard deviation of the original signal.

The receptor robot (robot B in Figure 2) took the audio
signal—in the experiment presented here, the simulated signal
was simply passed forward, instead of being reproduced by a
loudspeaker—, applied an FFT operator and used the autoen-
coder to get the auditory feature vector. The vector was fed
into the inverse model (starting with initial sensory conditions,
that is speed, differential and previous motor command, as set
to zero), to infer the motor commands that were needed to
generate such an input ego-noise. To generate the following
sensory states, the motor commands were fed into the velocity
(4) forward model. The sensory output was then fed back into
the same forward model and also into the inverse model, along
with the next ego-noise features. This process was repeated
until we generated the complete motor command sequence
we wanted Robot B to imitate.

IV. RESULTS

Figures 3, 4, 5, 6 and 7 illustrate the results of this study.
In particular, figure 5 shows the velocity forward models
predictions for the robot A and robot B (so after the full
simulation process). Figures 3 and 4 show the mean squared



Fig. 3. Mean Squared Errors of robot A velocity (3) forward model for motor
1, 2 and both motors.

Fig. 4. Mean Squared Errors of robot B velocity (3) forward model for motor
1, 2 and both motors.

errors of these predictions in comparison with the original
signal taken from the test dataset.

Figure 5 illustrate the predictions of the velocity (4) forward
model. The original velocity is plotted for each motor (blue
line), together with the velocity prediction of the forward
model of the robot A (orange line) and the velocity prediction
of the forward model of the robot B (green line). As expected,
predictions of robot B were worse than those of robot A, prob-
ably due to the errors accumulated through the propagation of
the internal simulation and the communication of that from
the robot A to the robot B.

It has to be noted that the prediction error did not accu-
mulate in robot A predictions. It could suggest that the last
motor command input had a higher importance, than that of
the current speed, for the forward model prediction (velocity
FM). However, further tests need to be done to confirm this.

Similarly, prediction error did not accumulate in robot B
predictions, as well, even though also motor commands were
fed back into the loop. This would suggest that action effects
did not depend very strongly on the previous sensory states.
and that combinations of last speed and last command as inputs
helped each other to compensate the error.

As shown in 6, motor predictions were in general better for

Fig. 5. Comparison between the original velocity signal (blue) and the signals
generated by robot A (orange) and B (green) velocity forward models. Last
200 elements of the sequence are shown.

Fig. 6. Mean Squared Errors of the imitated motor commands for motor 1,
2 and both motors (robot B).

one of the two motors of the robot, namely motor 2 (right
motor), than for motor 1 (left motor). This suggests that the
ego-noise produced by one motor, in this case the right one,
dominates. A similar result has been obtained in our previous
study [4], where one of the two motors dominated.

Figure 7 is perhaps the most important one, as it shows
the result of the entire simulation. For each motor, the blue
line shows the original motor command sequence taken from
the test dataset (figure shows the last 200 samples subset).
The orange line depicts the result of the prediction of the
inverse model of the robot B, after the entire simulation loop.
As visible here, again, predictions were much closer to the
original data for the motor 2 (right).

Finally, figure 8 shows the spectrogram of the auditory data
produced, respectively, by the sequence, by the forward model
of the robot A, and by the forward model of robot B. In fact,
we used an ego-noise (3) forward model also to predict what
sound the motors of robot B would have done, in order to
compare them to the original sound and to the one predicted
by robot A

It can be noted, from Figure 8, that the spectrogram of the
auditory prediction generated by robot A is pretty similar to



Fig. 7. Comparison between the original motor command sequence (robot
A) and the imitated motor command sequence (robot B). Last 200 elements
of the sequence are shown.

Fig. 8. Ego-noise spectrograms of the original prerecorded sequence (left),
sequence generated by robot A forward model (center) and sequence generated
by the imitated motor commands of robot B (right). Last 200 elements of the
sequence are shown.

the original. Although the one generated by robot B is more
diffused, a similar pattern is still visible. Further studies will
confirm this similarity in a quantitative way. This analysis has
not been carried out so far, as the scope of this work is not to
demonstrate the quality of regenerated auditory pattern from
transmitted auditory codes between robots.

V. CONCLUSIONS

We presented a framework for learning and for generating
robot ego-noise. A developmental approach was adopted for
allowing a wheeled robotic platform to learn the auditory
consequences of its own movements. We demonstrated how
predictive processes can be used to communicate motor infor-
mation between robotic agents, through auditory means.

In a simulated experiment presented here, a robot generated
a specific auditory feature vector from an intended sequence
of actions and communicated it for reproduction to another
robot, which consequently decoded it into motor commands,
using the knowledge of its own motor system. However, this
paper presented a preliminary simulation test where a robot
reproduces auditory sequences previously generated by itself.
We are currently carrying out tests, not yet reported here,
where different agents use models that are trained with—and

thus are specific to—their own self-generated sensorimotor
data. Nonetheless, the presented experiment already demon-
strates the potentialities of the proposed architecture for robot
ego-noise learning and for robot communication and imitation
through natural means, such as audition.
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[10] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” in International
Conference on Artificial Neural Networks. Springer, 2011, pp. 52–59.

[11] P. Rochat, “Self-perception and action in infancy,” Experimental brain
research, vol. 123, no. 1-2, pp. 102–109, 1998.

[12] S. Zoia, L. Blason, G. D’Ottavio, M. Bulgheroni, E. Pezzetta, A. Scabar,
and U. Castiello, “Evidence of early development of action planning in
the human foetus: a kinematic study,” Experimental Brain Research, vol.
176, no. 2, pp. 217–226, 2007.

[13] J. Olier, E. Barakova, G. Rauterberg, and C. Regazzoni, “Grounded
representations through deep variational inference and dynamic pro-
gramming,” in Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), 2017, pp. 277–
282.

[14] A. F. T. Winfield and M. D. Erbas, “On embodied memetic evolution
and the emergence of behavioural traditions in robots,” Memetic
Computing, vol. 3, no. 4, pp. 261–270, Dec 2011. [Online]. Available:
https://doi.org/10.1007/s12293-011-0063-x

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.


