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Abstract

We present an implementation of a biologically inspired
model for learning multimodal body representations in artifi-
cial agents in the context of learning and predicting robot ego-
noise. We demonstrate the predictive capabilities of the pro-
posed model in two experiments: a simple ego-noise classifi-
cation task, where we also show the capabilities of the model
to produce predictions in absence of input modalities; an ego-
noise suppression experiment, where we show the effects in
the ego-noise suppression performance of coherent and inco-
herent proprioceptive and motor information passed as inputs
to the predictive process implemented by a forward model. In
line with what has been proposed by several behavioural and
neuroscience studies, our experiments show that ego-noise at-
tenuation is more pronounced when the robot is the owner of
the action. When this is not the case, sensory attenuation
is worse, as the incongruence of the proprioceptive and mo-
tor information with the perceived ego-noise generates bigger
prediction errors, which may constitute an element of sur-
prise for the agent and allow it to distinguish between self-
generated actions and those generated by other individuals.
We argue that these phenomena can represent cues for a sense
of agency in artificial agents.

Introduction

Empirical evidence from cognitive science and neuroscience

suggests that we, as humans, maintain an internal represen-

tation of our body, or a model of our motor system, and that

such an internal model would be involved in processes of

simulation of sensorimotor activity. These processes would

affect the way we experience the interaction with the en-

vironment and would be fundamental for the implemen-

tation of basic cognitive skills. For example, simulation

processes are thought to have a role in the way we differ-

ently perceive self-generated actions or actions performed

by other subjects. One of the proposals that explains this

phenomenon (Blakemore et al., 2000a,b) says that when we

perform a motor action, an efferent copy of the motor com-

mands that our brain sends to our muscles would be used in

a predictive process that anticipates the sensory outcomes

of the movement. Such predictions would then be com-

pared to the actual sensory consequences and, if the two

correspond, the perceived sensory consequences are atten-

uated. This would enable a differentiation between self-

generated sensory events and those externally generated that

are not mapped to any internally generated efferent copy

of the motor commands (Blakemore et al., 2000a). The

existence of such a self-monitoring mechanism would ex-

plain, for example, why tickling sensations cannot be self-

produced (Blakemore et al., 2000b), why people are better at

recognising themselves than others when watching movies

of only point-light walkers (Loula et al., 2005), why people

are more accurate in predicting the landing point of a thrown

dart from a video screen when they observe their own throw-

ing action than when observing another person’s throwing

action (Knoblich and Flach, 2001), or why people perceive

the loudness of sounds as less intensive when they are self-

generated, than when they are generated by other persons

or by a software (Weiss et al., 2011). In this latter study on

selective attenuation of self-generated sounds, the authors

proposed that the experience of perceiving actions as self-

generated would be caused by the anticipation and, thus, the

attenuation of the sensory consequences of such motor com-

mands, which would be related to ”the privileged access to

internally generated efferent information during one’s own

action” (Weiss et al., 2011). The sense of agency, that is the

pre-reflective experience that we are the owner of an action

we are executing, is thus proposed to be dependent on the

degree of congruence vs. incongruence between predicted

and actual sensory consequences of our bodily actions.

In the investigation on sensorimotor simulation processes

in the human brain, internal forward and inverse models

have been proposed (Wolpert et al., 2001). A forward model

(illustrated in Figure 1) - or predictor, as firstly proposed in

the control literature as a means to overcome problems such

as the delay of feedback in control strategies - incorporates

knowledge about sensory outcomes of self-generated ac-

tions. Inverse models - or controllers, as they were initially

proposed for implementing inverse kinematics processes

for controlling robotic manipulators - perform the opposite

transformation providing a system with the necessary motor

command to go from an initial sensory situation to a desired
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Figure 1: An illustration of the forward model (predictor).

one. Such models encode the dynamics of the motor system

and can provide artificial agents with multimodal represen-

tations, as they fuse together sensory and motor informa-

tion (Wilson and Knoblich, 2005), and with the capability

to predict sensorimotor activities based on previous expe-

rience. Studies such as the ones reported above shed light

on the importance that predicting sensory consequences of

self-generated actions have for basic motor tasks and cog-

nitive skills. Equipping artificial agents with similar com-

putational processes has been shown to be a promising ap-

proach in the development of different skills, such as naviga-

tion (Möller and Schenck, 2008; Escobar et al., 2012), per-

ception of the functional role of objects (Kaiser, 2014), ac-

tion selection and tool-use (Schillaci et al., 2012) and sense

of agency (Pitti et al., 2009).

The work presented here adopts a biologically inspired

framework for internal body representations (Schillaci et al.,

2014) that can enable a robot with the capability to perform

simulations of sensorimotor activities based on previous ex-

perience. Inspired by human development, the learning of

this body representation is intertwined with the interaction

experience of the robot with the external environment. In

particular, we frame this work into the context of one of the

biggest - and most unexplored - challenges of robot audition,

the artificial capability of listening, that is the presence of

ego-noise, or the noise that the robot generates while moving

around. Being able to estimate self-induced changes in the

auditory signal is not only crucial for attenuating the noise,

and thus for enhancing the auditory signal for further pro-

cessing such as speech recognition, but also for distinguish-

ing ego-noise from other sounds in natural acoustic envi-

ronments, which is a prerequisite for efficient and intuitive

interaction with other people and with the surroundings.

We demonstrate the predictive capabilities of the model in

the auditory domain in two tasks. Firstly, we introduce the

framework in a simple classification task, where the robot

has to recognise a behaviour that it executes based on the

comparison of the produced ego-noise to internal simula-

tions of ego-noise produced by intended actions. We also

show how our model can deal with the situation when input

information are missing, for example by simulating a dam-

age in the system, resulting in the model still being able to

classify, although with poorer performance. Secondly, we

show how the proposed framework, and the predictive capa-

bilities that it provides, could serve as a basis for the devel-

opment of a sense of agency in artificial agents. In particular,

we report an experiment on ego-noise attenuation based on

sensorimotor predictions, where the quality of the attenua-

tion is dependent on the degree of congruence vs. incongru-

ence between predicted and actual sensory consequences of

self-generated actions. In line with the behavioural studies

reported above, we show that prediction errors generated by

internal sensorimotor simulations are smaller when the pro-

prioceptive information is coherent with the events that are

perceived from the external environment. Simply put, we

show that sensory attenuation is more pronounced when the

robot is the owner of the action, and we argue that this could

serve as a cue for self-agency in artificial agents.

In the rest of the paper we firstly introduce the framework

presented in (Schillaci et al., 2014) and extend it. Therefore,

we illustrate and discuss the experiments mentioned above.

Finally, we draw the conclusions and the outlines of future

work.

An Internal Body Representation for a

Humanoid Robot

Evidences from behavioural sciences and neuroscience sug-

gest that motor and brain development are strongly inter-

twined with the experiential process of exploration, where

internal body representations would be formed and main-

tained over time (Cang and Feldheim, 2013). Kaas (1997)

reported the existence of topographic maps in the visual, au-

ditory, olfactory and somatosensory systems, as well as in

parts of the motor brain areas. Researchers proposed that

such maps would self-organise throughout the brain devel-

opment and along the sensorimotor experience of the indi-

vidual with the external environment. They would function

as projections of sensory receptors and of effector systems,

and are arranged in a way that adjacent regions process spa-

tially close sensory parts of the body. Many studies support

the existence of an integrated representation of visual, so-

matosensory, and auditory peripersonal space in human and

non-human primates (see for example Holmes and Spence

(2004)), suggesting that the brain maintains integrated mul-

timodal representations, which are essential for sensorimo-

tor control (Maravita and Iriki, 2004).

During the last couple of decades, interest in the possibil-

ity to develop models inspired by the mechanisms of human

body representations has been growing also in the robotics

community. In robot audition, for example, Ince and col-

leagues investigated methods for learning, predicting and

suppressing robot ego-noise (Ince et al., 2009). The authors

built up an internal body representation of a humanoid robot

consisting in motor sequences mapped to the recorded motor

noises and their spectra. This resulted in a large noise tem-

plate database that was then used for ego-noise prediction

and subtraction.

Here, we report an implementation of a biologically in-

spired model for body representations that can encode expe-

rience gathered through sensorimotor learning and that can

generate predictions of auditory and motor states. In par-

ticular, we propose an internal models framework consist-



ing of connected neural networks that simulate distinct sen-

sorimotor brain areas. The internal model encodes sensory

and motor modalities as topographic maps that self-organise

throughout the interaction of the robotic agent with the ex-

ternal environment. Moreover, a parallel intermodal map-

ping is performed: sensory and motor maps are connected

through Hebbian links that are strengthened when an occur-

rence of multi-modal activity is observed.

The model architecture is inspired by the Epigenetic

Robotics Architecture (Morse et al., 2010), where a struc-

tured association of multiple Self-Organising Maps (SOMs)

(Kohonen, 1982) is adopted for mapping different sensori-

motor modalities in a humanoid robot, and it is based on

similar works we previously published (Kajić et al., 2014;

Schillaci et al., 2014). Self-organising maps have the advan-

tage of producing low-dimensional and discretised represen-

tations of the input space of the training samples.

In the proposed model, multiple SOMs, each representing

a sensory or motor modality, are associated through unidi-

rectional Hebbian links: each node of the input map is con-

nected to each node of the output map, where the connection

is characterised by a weight. The weight is updated accord-

ing to a positive Hebbian rule that simulates synaptic plas-

ticity of the brain: the connection between a pre-synaptic

neuron (a node in the input map) and a post-synaptic neu-

ron (a node in the output map) increases if the two neurons

are simultaneously activated. Learning of the internal model

consists in updating the SOMs and the Hebbian connections

with sensory and motor data gathered through an exploration

behaviour executed by the robot. During the execution of the

robot movements, sensory and motor data are provided as

training inputs to the corresponding maps in an online fash-

ion. A SOM is constructed as a grid of neurons, where each

neuron is represented as an n-dimensional weight vector wi

(Kajić et al., 2014; Kohonen, 1982). The number of dimen-

sions of a weight vector corresponds to the dimensionality

of the input data. Weights in the network are initially set

to random values and then adjusted iteratively by presenting

the input vector xp. In each iteration, the winning neuron i

is selected as a neuron whose weights are closest to the input

vector in terms of the Euclidean distance. After selecting a

winning neuron, the weights of all neurons are adjusted:

∆wj = η(t)h(i, j, t)(wj − xp) (1)

The parameter η(t) is a learning rate which defines the

speed of change. The function h(i, j, t) is a Gaussian neigh-

borhood function defined over the grid of neurons as:

h(i, j, t) = e

(

w2
i
−w2

j

2πσ(t)2

)

(2)

The learning rate η(t) and the spread of the Gaussian

function σ(t) are held constant for a certain time interval,

and are annealed exponentially afterwards.1 The function is

centered around the winning neuron i and its values are com-

puted for all neurons j in the grid. The spread of the func-

tion determines the extent to which neighbouring weights of

a winning neuron are going to be affected in the current iter-

ation. The topology of the network is preserved by pulling

together neurons towards the winning node.

After every update of the SOMs, the Hebbian links con-

necting each pair of maps are updated as well. The Hebbian

update corresponds to the following steps. For mapping an

input map (e.g. the motor map) to an output map (e.g. the

auditory map):

- select the pre-synaptic neuron (winner node) as the closest node
i in the input map to the current input pattern x (e.g. the joint
rotation);

- select the post-synaptic neuron (winner node) as the closest node
j in the output map to the current output pattern y (e.g. the robot
ego-noise);

- strengthen the connection wij between the pre and post-synaptic
neurons according to the modified positive Hebbian rule:

∆wij = λAi(x)Aj(y) (3)

whereAi(x) is the activation function of the neuron i over

the Euclidean distance between the neural weights and the

data pattern x, λ is a learning rate used for slowing down the

growth of the weights (in the experiments presented here, it

is initialised to 0.1). The activation function of a neuron,

A(d), is computed as:

A(d) =
1

1 + 2 tanh(d)
(4)

where d is the normalised Euclidean distance between the

position of the node and the input pattern.

After the update, a normalisation is performed on all the

links from the input map converging to a node in the out-

put map, for each node in the output map, as described by

Miikkulainen (1990). Such a normalisation implements a

forgetting process, since it strengthens the updated link and

it weakens all the other connections. The same process is

performed on the unidirectional links connecting each pair

of maps in the model in both directions.

The trained model can be used for performing sensory and

motor predictions. Predictive processes can be activated by

querying the model with partial or full sensorimotor infor-

mation. For example, we can infer the ego-noise produced

by the execution of a specific motor command (forward pre-

diction) from the model depicted in Figure 2 by querying

the model with an input to the proprioceptive map, consist-

ing of the joints configuration of the robot, and an input to

the motor map, consisting of the joints rotations, which are

1In the experiments presented in the the following section, we
set η = 0.9 and σ = 0.7.



therefore propagated to the auditory map. In fact, a predic-

tive system based on propagation of signals between maps

has been implemented. The propagation of signals works as

follows. Given a sensory or motor input:

- Find the winner node w and its k neighbours (k set to 5, in the
experiments presented here) in the corresponding map, as the
closest node to the input, and calculate its activation using the
activation function described in (4);

- Propagate the activation of the nodes in the winners list of the
input map to all the nodes in the output map connected to it.
The propagated value to each node in the output map is equal to
the activation of the selected node in the input map multiplied
by the weight of the Hebbian link connecting the selected node
in the input map to the corresponding node in the output map;
multiple propagations to the same node in the output map are
summed up;

- Compute the prediction in the output modality as the weighted
average of the positions of the nodes in the output map, each
weighted by the incoming propagation.

If an observation of the output modality is available, a pre-

diction error can be computed as the distance between the

predicted outcome and the observation. Moreover, multiple

propagations can be executed from different input modali-

ties to the same output modality, as illustrated in Figure 2.

From each input modality, signals can be spread out to the

desired output modality as described above. Thus, incoming

propagations onto the output map can be summed up and a

prediction can be computed as the weighted average of the

nodes’ positions multiplied with their activations.

Auditory MapAuditory Map

Motor Map

Proprioceptive Map

Figure 2: An example of a forward model consisting of three

maps.

Figure 2 illustrates a forward model (as described in Fig-

ure 1) implemented using the proposed architecture com-

posed of three SOMs: a proprioceptive map, encoding the

initial joint configuration of the robot, a motor map, i.e. en-

coding the rotation applied to the joints from the initial po-

sitions, and an auditory map, encoding the noise produced

by the movements. An inverse model can be implemented

with two sets of directional Hebbian links: the first starting

from the proprioceptive map and ending at the motor map,

and the second starting from the auditory map and ending at

the motor map.

Ego-noise representation

We represent the ego-noise produced by the robot move-

ments using Mel-frequency cepstral coefficients (MFCCs),

which are features derived from a type of cepstral represen-

tation of the auditory signal commonly used in speech recog-

nition (Sahidullah and Saha, 2012). In this work, MFCC

features are derived performing the following steps:

- Calculate the Fourier transform of an audio chunk. In the ex-
periments reported here, we used a single channel audio signal,
recorded from the robot with a sampling rate of 48 kHz. Audio
chunks of 40 ms are extracted from the signal using a rectan-
gular window. Chunks are extracted every 20 ms (that is, with
a 50% overlap between subsequent chunks). FFT size is 2048
samples. 32 triangular overlapping filters are used in the Mel
filterbank, with a mel filter width of 200. The frequency range
of the filterbank goes from 0 to 16 kHz;

- Apply the Mel filterbank to the power of the spectrum and sum
up the energy in each filter;

- Calculate the Discrete Cosine Transform of the logarithm of the
filterbank energies;

- Keep the first 26 or 32 coefficients of the DCT as MFCC fea-
tures.

For implementing the MFCC feature extraction process,

we adopted and extended an existing open source and cross-

platform digital signal processing library, named Aquila

DSP (http://aquila-dsp.org/). Before being processed, input

data streams are aligned in time, to ensure that the audi-

tory stream matches the actions executed by the robot. We

use the NAOqi and experimental NAOqi-Modularity frame-

works provided by Aldebaran Robotics, which allow us to

combine asynchronous data collection and data processing

using filter chains in the humanoid robot Nao.

Experiments

We report here two experiments. Firstly, we present a simple

classification experiment with the aim of demonstrating the

learning and predictive capabilities that the proposed model

can provide to artificial agents. In particular, we adopt the

proposed framework for allowing a humanoid robot to learn

the ego-noise that it is producing when performing a mo-

tor behaviour consisting of periodical horizontal head rota-

tions (see Figure 3). Thus, we implement a classification

experiment where the robot has to classify a behaviour it is

executing in terms of velocity profile, by comparing the pro-

duced ego-noise to simulations of the ego-noise produced by

imaginary executions of all the behaviours in the repertoire.

In addition, we show how the model can deal with the situ-

ation when input information are missing, for example due

to a damage in the system, resulting in the model still being

able to classify, although with poorer performance.

Secondly, we describe an experiment on ego-noise at-

tenuation with the aim of showing that the computational

processes implemented by our framework resemble those



Figure 3: The robot behaviour executed during the recordings consisted in periodical rotations of the head on the yaw axis.

Figure 4: Example of trajectories of synchronised audio-motor data from the four velocity profiles. The upper plot shows the

trajectories of the first 4-MFCC coefficients extracted from the single channel auditory signal recorded while executing the

head rotations. The plot in the bottom shows the head yaw joint position (red line) and the head yaw rotation over 40ms (green

line). The columns represent the different velocity profiles. From left to right: slow, medium, fast and very fast.

proposed by the behavioural studies mentioned in the in-

troduction of this work, which would explain the mech-

anisms behind the sense of agency (Weiss et al., 2011;

Blakemore et al., 2000a). In particular, we report an exper-

iment on ego-noise attenuation based on sensorimotor pre-

dictions, where the quality of the attenuation is dependent

on the degree of congruence vs. incongruence between pre-

dicted and actual sensory consequences of self-generated ac-

tions. In line with the behavioural studies reported above,

we show that prediction errors generated by internal sen-

sorimotor simulations are smaller when the proprioceptive

and motor information are coherent with the events that are

perceived from the external environment. We reported simi-

lar results in a different robotic experiment in the context of

visuo-motor coordination (Schillaci et al., 2013).

Ego-noise classification

In the first experiment, we trained four different models

with sensorimotor data gathered while executing a robot be-

haviour consisting of periodical horizontal head rotations

with four different velocity profiles. We implemented the

four velocity profiles using the original Aldebaran NAOqi

controller with gradually increasing velocity thresholds,

here named as slow, medium, fast and very fast. Figure

4 shows sample trajectories of aligned auditory and motor

training data for each of the four velocity profiles. Training

of the models has been tested online and runs in real-time on

an Aldebaran Nao v.5 robot. However, the classification re-

sults reported here are taken from models trained and tested

offline. Sensorimotor data was gathered from the robot exe-

cuting for ca. 200 seconds each of the four velocity profiles,

resulting in 9449 training samples for the slow velocity pro-

file, 9449 for the medium, 9459 for the fast and 9459 for

the very fast. Each training sample consisted of the follow-

ing sensorimotor information: S(t), encoding the MFCC fea-

tures extracted from a single audio chunk (see Section ”Ego-

noise representation” for more details); S(t-1), encoding the

initial position of the head yaw joint, that is the closest po-

sition in time to the first audio sample of the MFCC chunk;

M(t-1), encoding the rotation of the head yaw joint over 40

ms, from S(t-1).

Four internal models have been trained with the different

datasets (slow, medium, fast and very fast velocity profiles).

Each internal model consisted of three maps (see Figure 2):

a proprioceptive map, encoding a mono-dimensional feature

space representing the initial head yaw joint position, that

is S(t − 1); a motor map, encoding a mono-dimensional

feature space representing the head yaw joint rotation, that

is the motor command M(t − 1); an auditory map, encod-

ing a 26-dimensional MFCC feature space representing the

robot ego-noise. Each internal model encoded both the in-

verse and the forward models, as these are implemented by



the Hebbian tables containing the proper directional links,

as explained in the previous section. Each SOM consisted

of a 10x10 lattice of nodes, whose weights are randomly ini-

tialised and sampled from a Gaussian distribution N (0, 1).
The weights of the Hebbian links connecting each pair of

SOMs were all initialised to 0.

The classification task consisted in feeding the four inter-

nal models (slow, medium, fast and very fast) with test data

samples gathered from the different datasets which stored

sensorimotor data produced with each of the four velocity

profiles, and in comparing the predicted auditory outcome

with the actual one. Auditory chunks are classified as the ve-

locity profile belonging to the forward model that produced

the smallest prediction error (calculated as the Euclidean

distance between the predicted and the observed MFCCs).

Figure 5 illustrates the classification process using internal

simulations.

S(t-1): J
head yaw

S*(t): Mfccslow

FM

Slow

M(t-1): delta J
head yaw

FM

Medium

FM

Fast
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Very Fast

S*(t): Mfccmedium

S*(t): Mfccfast

S*(t): Mfccvery fast

S(t): Mfcc

Predictions

Observation:

X

X

X

X

Errorslow

Errormedium

Errorfast
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Figure 5: Diagram of the classification process.

Classification performance was measured for each trained

model and on 5 different runs (thus, different test datasets).

Table 1 shows the confusion matrix for the best run, when

using only forward predictions with full input information.

Classified as

Slow Medium Fast Very fast # samples

Executed

velocity

Slow 94,00% 5,50% 0,50% 0,00% 200

Medium 6,00% 89,50% 4,00% 0,50% 200

Fast 0,50% 14,00% 85,5% 0,00% 200

Very Fast 4,00% 4,50% 7,50% 84,00% 200

Table 1: Confusion matrix showing the performance of the

classification using only forward predictions.

We simulated a damage in the system, which was imple-

mented as a lack of proprioceptive and motor information,

during the predictive process. Internal simulations with par-

tial inputs - in this case, only the auditory modality - were

performed. The first step consisted in estimating a predic-

tion of the motor command needed to generate the auditory

outcome specified as input to the model, using an inverse

prediction. The predicted motor command is fed into the

corresponding forward model, which anticipates the sensory

outcome of the intended action. Table 2 shows the confusion

matrix of the best of 5 classification runs, where we executed

full internal simulations using only partial information as in-

put. As expected, predictions estimated with missing propri-

oceptive inputs produced a degradation of the classification

performance. However, the system is still able to classify

correctly with at least 50% success rate.

Classified as

Slow Medium Fast Very fast # samples

Executed

velocity

Slow 85,5% 11,50% 2,50% 0,50% 200

Medium 7,50% 77,50% 13,00% 2,00% 200

Fast 1,00% 16,00% 80,0% 3,00% 200

Very Fast 1,50% 7,50% 37,00% 54,00% 200

Table 2: Confusion matrix showing the performance of the

classification using both the inverse and forward predictions

with missing input data (proprioceptive joints information).

Ego-noise attenuation as a cue for sense of agency

We performed a second experiment on ego-noise attenua-

tion based on ego-noise predictions. In the experiment, we

simulated that the robot is listening to an ego-noise signal

(previously recorded from the robot itself) and, in the mean-

while, performing a motor behaviour. Along these move-

ments, a forward model - trained with a periodical head ro-

tation behaviour with slow velocity profile, as in the previ-

ous experiment - was used in executing sensorimotor simu-

lations aimed at predicting the robot ego-noise generated by

the current motor behaviour of the robot. We tested three

conditions. In the first one, we simulated that the robot is

executing a motor behaviour that is coherent with the ob-

served ego-noise. In a second one, we simulated that the

robot is not moving, thus holding the head in an initial po-

sition (applying a null motor command). In a third condi-

tion, we simulated that the robot is performing a periodical

head rotation that is not aligned in time with the observed

ego-noise. In each of the three conditions, we predicted the

auditory outcomes of the movements by feeding the forward

model with the joints information corresponding to the cur-

rent motor behaviour. Thus, we subtracted from the original

auditory information the one of the estimated noise.

Ego-noise suppression is performed in the log-filterbank

energy domain. An inverse DCT (Discrete Cosine Trans-

form) is applied to the 32-MFCC feature vectors repre-

senting the predicted and actual ego-noise chunks, produc-

ing two 32-D vectors (log-filterbank energies). Therefore,

the vector representing the predicted ego-noise is subtracted

from the one representing the actual ego-noise. In the event

that the subtraction result in a dimension is negative, spectral

flooring is applied, that is the attenuated signal is computed

as the original one multiplied with a factor of 0.1.

Figure 6 qualitatively illustrates the results of the ego-

noise attenuation. As evident from the plots, ego-noise at-

tenuation is more pronounced when the input data fed to



the forward model is coherent with the auditory output (left

graphs in the Figure - dark blue colour corresponds to total

suppression of the ego-noise). The quality of the attenua-

tion is worse, when there is incongruence between predicted

and actual sensory consequences of self-generated actions,

as in the case of the second and third condition. In particu-

lar, the second behaviour (head holding an initial position)

generates a constant ego-noise prediction. The difference

between the original and predicted ego-noise (bottom row,

central column) is thus higher than in the case when the mo-

tor behaviour matches the observed ego-noise. The same

effect is observed in the third condition, where the motor

behaviour does not match the observed ego-noise.

In line with the studies reported in the introduction of this

study, our experiment shows that prediction errors generated

by sensorimotor simulations are smaller when the propri-

oceptive and motor information are coherent with the per-

ceived ego-noise. Simply put, sensory attenuation is more

pronounced when the robot is the owner of the action, as

it has ”a privileged access to internally generated efferent

information during its own action” (Weiss et al., 2011), as

simulated in the first condition of this experiment. The sec-

ond and third condition simulated the situation where the

robot is listening to another artificial agent performing a pe-

riodical horizontal head rotation behaviour, that sounds ex-

actly as it would have been produced by the robot itself.

However, the fact that the observed proprioceptive and mo-

tor information were incoherent with the observations of the

ego-noise did constitute an element of surprise, as the for-

ward model fed with such input data produced worse ego-

noise prediction than in the first condition of the experiment

- as evident from the bigger prediction errors illustrated in

Figure 6, bottom plots of the second and third columns.

Conclusion

We presented an implementation of a biologically inspired

model for coding internal body representations that can gen-

erate predictions of auditory and motor experiences. The

predictive capabilities provided by the models are tested

in two experiments: a simple ego-noise classification task,

where we also showed the capabilities of the model to pro-

duce predictions even in the absence of input modalities; an

ego-noise suppression experiment, where we showed the ef-

fects in the ego-noise prediction, and thus suppression, per-

formance of the input data to the forward model, when they

are coherent or incoherent with the auditory observations.

In line with the behavioural studies reported in the introduc-

tion of this paper, our experiment shows that prediction er-

rors generated by sensorimotor simulations are smaller when

the proprioceptive and motor information are coherent with

the perceived ego-noise. Simply put, sensory attenuation is

more pronounced when the robot is the owner of the action.

When this is not the case, sensory attenuation is worse, as

the incongruence of the proprioceptive and motor informa-

tion with the perceived ego-noise generates bigger predic-

tion errors, which may constitute an element of surprise for

the agent and allow it to distinguish between self-generated

actions and those generated by other individuals.

In a separate study, we implemented a self-monitoring

mechanism in a humanoid robot for the prediction and atten-

uation of visually detected consequences of self-generated

actions. During a training phase consisting of a self-

exploration behaviour, the system trained a forward model

with motor data and visual data encoding movements de-

tected from the robot camera. Consistently with the study re-

ported here, sensory attenuation resulted to be more promi-

nent in areas in the visual input where movements from the

robot were expected. Instead, no attenuation was observed

in areas of the visual input where the movements of an exter-

nal object were detected. Again, this demonstrates that sen-

sory attenuation processes can be adopted as a cue for dis-

tinguishing movements produced by external agents to those

produced by the agent itself.

Therefore, we argue that equipping artificial agents with

internal body representations and with the capability to per-

form sensorimotor predictions based on previous experience

can represent a promising research direction towards the de-

velopment of a sense of agency in artificial systems.
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Kajić, I., Schillaci, G., Bodiroža, S., and Hafner, V. V. (2014).
Learning hand-eye coordination for a humanoid robot using
soms. In ACM/IEEE Int. Conf. on Human-robot Interaction
(HRI2014), pages 192–193.

Knoblich, G. and Flach, R. (2001). Predicting the effects of actions:
Interactions of perception and action. Psychological Science,
12(6):467–472.

Kohonen, T. (1982). Self-organized formation of topologically cor-
rect feature maps. Biological Cybernetics, 43(1):59–69.

Loula, F., Prasad, S., Harber, K., and Shiffrar, M. (2005). Recog-
nizing people from their movement. Journal of Experimental
Psychology: Human Perception and Performance, 31(1):210.

Maravita, A. and Iriki, A. (2004). Tools for the body (schema).
Trends in Cognitive Sciences, 8(2):79 – 86.

Miikkulainen, R. (1990). DISCERN: A Distributed Artificial Neu-
ral Network Model Of Script Processing And Memory. PhD
thesis, University of California.
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