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Abstract—Robot ego-noise, that is the noise produced while
the robot is moving around, can carry useful information about
the motor system and the embodiment of the agent. We present
an experiment where a mobile robot acquires knowledge about
its ego-noise. In particular, we adopt a learning strategy based on
self-exploration behaviours and on an inverse model for encoding
the mappings between ego-noise and the motor commands that
produced it. A Convolutional Autoencoder is adopted for semi-
supervised learning of auditory features. The inverse model maps
both auditory features and perception of the robot speed to the
motor commands that produced the ego-noise. We demonstrate
how the trained models can be used for imitating movements
from listening to the noise they produce.

I. INTRODUCTION

The capability to imitate the actions of others is an important
tool in social learning in humans, as it can dramatically speed
up the acquisition of new skills. Scientists are still debating
on when and how infants begin to match the behaviours of
others [1] and on what is innate or developed in this capability
[2][3]. Studies suggest the involvement of the human motor
system in the understanding and imitation of actions [4]. The
main proposal, partially supported by the discovery of mirror
neurons [5], claims that observing and imagining an action
excites the motor regions in the brain that are used to execute
that same action [6].

Social learning and imitation are fundamental topics also
in cognitive robotics. In fact, mechanisms for learning by
imitation can reduce the efforts required by engineers in the
implementation of new skills in artificial agents. On the other
hand, robots can be used as tools in the investigation of the
developmental stages of imitation [7], [8].

Many studies can be found on this topic in the cognitive
robotics literature. Demiris and colleagues [9], for example, in-
vestigated how to combine developmental and social learning
in robots. They proposed a framework based on internal mod-
els for encoding motor actions learned from self-exploration
and for recognising and imitating actions performed by others
[10].

In this paper, we present an experiment where a wheeled
robot learns the mapping between the auditory noise it pro-
duces while moving and the motor commands that generated
it. The learning framework is based on two behavioural and

computational components: a self-exploration behaviour and
an internal model, in particular, an inverse model.

In a previous work [11], we represented the ego-noise
generated by the robot motors by using Mel-frequency cepstral
coefficients (MFCCs), which are features inspired by human
auditory perception and widely used for speech recognition as
well as for music classification [12]. Here, we instead apply
a Convolutional Autoencoder (CAE [13]) for semi-supervised
feature learning of the auditory signals.

In the experiments described in the next sections, we
present an implementation of an inverse model, which maps
the auditory features learned with the CAE (using different
configurations) and the current sensory state of the robot
to the motor commands that produced the ego-noise. We
also present two imitation tests. In the first test, the robot
records its ego-noise while performing a predefined set of
command sequences. Then, the robot is asked to reproduce
the movements it previously performed by inferring the motor
commands from the auditory information (using the pre-
trained inverse model). When predicting, the inverse model is
fed with auditory features extracted from the recorded sound
using the Convolutional Autoencoder and with the current
sensory state of the robot (motor speed). In the second test, the
robot imitates the movements from listening to a prerecorded
noise reproduced by a loudspeaker. Finally, we analyse the
prediction performance of the inverse model under different
configurations and runs.

The rest of the paper is structured as follows. Section II
describes the built robotic platform and the characteristics
of the inverse model and the convolutional autoencoder. We
describe the experimental setup in Section III and present the
results in Section IV. Finally, we draw the conclusions and
outline future research directions in Section V.

II. METHODOLOGY

A. Robotic platform

For this research we used a wheeled robot developed at the
Adaptive Systems Group at the Computer Science Department
of the Humboldt-Universität zu Berlin (Figure 1). We adopted
this solution in order to have as much control as possible over
the robot’s hardware and software, which was crucial to ob-
tain a precise synchronization between motor commands and



auditory data. The robot is equipped with two DC gear motors
placed in a differential configuration, as well as a microphone
for audio recording. Each motor has a quadrature magnetic
encoder attached in order to provide a speed feedback to
the system. Additionally, the robot has three infrared distance
sensors, which were necessary for avoiding collisions during
the learning session that will be described later.

Fig. 1. Mobile robot used in the experiments presented in this paper. The
robot is a modified version of the platform presented in [11].

B. The computational framework

We adopted the theoretical framework of internal models
for encoding the robot knowledge about its ego-noise and
its motor system. As demonstrated by many studies in the
literature [14], such models can provide artificial agents with
the capability to anticipate the sensory outcomes of intended
actions (in the case of forward models) or to infer the specific
motor command that produces a desired perceptual experience
(in the case of inverse models). Forward and inverse models
are well known tools in control theory, where they are of-
ten referred to as predictors and controllers. Recently, they
gained interest also in the neuroscience and cognitive robotics
communities for the role they can have in explaining brain
functionalities and in implementing basic motor and cognitive
skills in artificial agents [14].

In a previous paper [11], we presented a mechanism for
learning and predicting the auditory consequences of self-
generated movements on a custom robotic platform using for-
ward models. We demonstrated how the predictive capabilities
of such models can be used to classify motor behaviours based
on the perceived auditory signals and to detect unexpected
changes in environmental conditions based on simulating the
production of ego-noise.

In this work, we use an inverse model for encoding the map-
ping between the auditory noise and the motor commands that
generated it. In particular, the inverse model is implemented
as a neural network (see details in Section III). Its input is
formed by auditory signals and the speed of the wheels and
the output is the motor commands that generated those inputs.

The model is trained on data collected using an exploration
behaviour where the robot moves with random motor com-
mands. This behaviour is inspired by the way human infants
acquire motor skills during early developmental stages (for a
review on exploration behaviours in artificial agents and in
humans, please refer to [14]).

C. Ego-noise representation

In a previous work on modelling robot ego-noise [11],
we used Mel-Frequency Cepstral Coefficients (MFCCs) for
representing the auditory noise generated by the robot motors.
While these coefficients yielded good results, they are pre-
designed features that require a specific extraction process
dependent on a set of parameters.

Here, we investigate how an artificial agent can learn
these features in a semi-supervised fashion, by means of a
Convolutional Autoencoder [13]. An autoencoder is a neural
network that is trained to copy its input to its output [15]. In
other words, it is a network that tries to reconstruct its input.
Usually, autoencoders are composed by an encoder - i.e. a
network that compresses the input into a code of, usually,
lower dimensionality - and a decoder - i.e. a network that
reconstruct the input from the code. By forcing the network
to be unable to copy the input perfectly to the output, the
learning process generates codes, or features, that store only
useful properties of the data.

An autoencoder with linear activation functions learns to
span the same subspace as PCA. Adding nonlinear activation
functions makes the autoencoder learn more powerful nonlin-
ear generalizations of PCA [15].

Convolutional autoencoders [13] are a variation of standard
autoencoders which use, instead of fully-connected layers,
a combination of convolutional and deconvolutional layers.
Convolutional neural networks are usually applied in image
and visual tasks. Nonetheless, convolutional networks and
CAEs have been proven to be powerful tools also in audio
classification tasks [16] . In this work, we adopt CAE for
auditory features extraction and dimensionality reduction.

III. EXPERIMENTAL SETUP

The experiment consists of two sessions: a learning session
and an imitation session. In the first phase, the robot gathers
sensorimotor experience by executing a random motor bab-
bling behaviour. This random behaviour generates auditory,
proprioceptive and motor data which is used for training
two neural networks: a convolutional autoencoder, for semi-
supervised auditory feature learning; and an inverse model,
implemented as a Multi-Layer Perceptron, which maps the
auditory features learned with the CAE (using different con-
figurations) and the current sensory state of the robot to the
motor commands that produced the ego-noise.

In the second session, we perform two imitation tests. In the
first test, the robot records its ego-noise while it is performing
specific command sequences. Then, the robot is asked to
reproduce the previously performed sequences by inferring
the motor commands from the auditory information using the
trained inverse model. When predicting, the inverse model is
fed with auditory features extracted from the recorded sound
using the CAE and with the current sensory state of the robot.
In the second test, the robot imitates the command sequences
by listening to the ego-noise reproduced by a loudspeaker.

The experimental setup consisted in the wheeled robot
depicted in Figure 1 performing movements in a rectangular



Fig. 2. The connection between the CAE and the IM and their inputs and
outputs.

arena (1.8 m x 1.0 m) made of a flat wooden floor and
cardboard walls.

In the learning phase, the robot executed five different
random babbling behaviours:

1. A random command is sampled from a uniform distribution
(range [0, 10], i.e. only forward movements) and applied equally
to both motors; a command is sampled every 150 milliseconds
for n iterations, where n is sampled from a uniform distribution
(range [1, 15]).

2. The babbling behaviour (1) is applied only to the left motor.
The speed of the right motor is kept to 0.

3. The babbling behaviour (1) is applied only to the right motor.
The speed of the left motor is kept to 0.

4. The babbling behaviour (1) is applied to both motors. At each
iteration, a different value is sampled for each motor.

5. Both motors are turned off, producing silence.

Each babbling behaviour was executed for the same amount
of time, and produced in total 25,000 samples (5,000 per
behaviour).

During the babbling behaviours, auditory input signals were
recorded with an embedded microphone. The sound was
captured at a frequency rate of 22,050 Hz. In particular, 2048
samples were collected every 150 milliseconds, where record-
ing was active for the first 100ms and was held off for 50ms
. Particular efforts have been spent on synchronising auditory,
motor and proprioceptive signals. For more details, please refer
to [11]. A Fast Fourier Transform (FFT) operator has been
applied to each 2048 samples auditory chunk, resulting in a
vector of 1025 values.

Once having gathered the training data, we trained three
different Convolutional Autoencoders, each characterised by a
different dimensionality of the latent space: 5, 10 and 20. In
other words, CAEs learned auditory features of 5, 10 or 20
dimensions from chunks of FFT vectors with 1025 dimensions.

These features were used as input to three different inverse
models, implemented as Multi-Layer Perceptrons. In partic-
ular, each inverse model was characterised by the following
inputs and outputs:

• Inputs:
S1(t) Consists of three elements: Left motor speed and acceler-

ation at time t; command sent to the left motor at t− 1.
S2(t) Consists of three elements: Right motor speed and accel-

eration at time t; command sent to the right motor at t−1.
A(t) CAE features extracted from the 100ms chunk recorded

from time t to time t+ 100ms.
• Outputs:
M1(t) Command sent to the left motor at time t.
M2(t) Command sent to the right motor at time t.

We trained three inverse models: IM1, IM2 and IM3
which are fed with auditory features A(t) of 5, 10 and
20 dimensions, respectively. Figure 2 illustrates the connec-
tion between the Convolutional Autoencoder and the inverse
model.

For each experiment, three different sequences have been
tested, as depicted in Figure 3.

Fig. 3. The three test sequences. In the first sequence, both motors are
activated with the same changing speed (the width of the arrow illustrates the
magnitude of the velocity). In the second sequence, the following commands
are sent: both motors start with the same speed; both stop (silence); only M1 is
activated; both motors stop; only left motor is activated. In the third sequence:
both motors start with the same speed; left motor increases the speed; both
motors go back to the initial speed; right motor increases the speed.

A. Experiment 1

In this experiment, the robot has to repeat a previously
executed command sequence based only on the recorded
ego-noise produced by the the motors in a relatively quiet
environment, using the three inverse models.

The robot moves according to one of the three scripted
sequences as shown in Figure 3; while it moves, it records the
produced ego-noise. Once having completed the movement,
the imitation phase starts. The imitation procedure consists of
reading a chunk of auditory data, calculating the FFT and then
getting the latent variables from the autoencoder. The extracted
features, together with the current sensory state (current speed,
acceleration and last command applied to two motors) are fed
into the inverse model. A prediction on the inverse model is
performed, which outputs the motor commands to be applied
in order to produce the ego-noise represented by the latent
variables. The process is repeated for each recorded audio
chunk. The ego-noise produced by the imitated movements
is also logged. We executed 8 runs for each of the three
sequences, for a total of 24 runs.

B. Experiment 2

In this second test, the robot has to repeat the same motor
sequences as in the previous experiment, but this time a pre-
recorded ego-noise is played from a loudspeaker. The speaker
was located in front of the robot at ca. 63 cm distance. We
performed this test to check whether the imitation performance
decreases when the ego-noise is produced by a different
source.

The audio track played from the speaker is shorter than
the audio from experiment 1, although the same sequence of
commands is executed. As in the previous experiment, we



executed 8 runs for each of the three sequences, for a total of
24 runs, with the same procedure described above.

IV. RESULTS

A. Experiment 1

Figure 4 shows the motor commands predicted by each
model during the imitation of the three sequences. Each row
depicts a different run. The filled areas in the plots show the
original commands that had to be imitated. The lines with
markers show the motor commands that are inferred by feeding
the inverse model with the ego-noise recorded from the robot
microphones and the current sensory states perceived by the
robot (purple line: IM with 5-D auditory features; orange line:
IM with 10-D auditory features; cyan line: IM with 20-D
auditory features).

It can be noted that the predictions are similar to the
original commands when imitating sequence 1, where the same
command is applied to both motors. As for sequence 2 and
3, it can be seen that one of the motors is dominant, in terms
of produced noise, compared to the other. For example, in
sequence 2, when motor 2 is turned off, the prediction error
is quite high for motor 2, probably due to the noise generated
by motor 1. After that, when motor 1 is turned off and motor
2 is turned on, the same effect can be observed (prediction
error high in motor 1, when it is silent), although with lower
magnitude. The same effect can be seen in sequence 3. In
spite of this dominance, we found that, at a certain level, the
models are capable of distinguish the ego-noise produced by
the motor 1 from that produced by the motor 2.

Figure 5 shows the root mean squared error (RMSE) during
imitation of the eight runs. It can be seen that the RMSE of
motor 2 is in most of the conditions higher than motor 1,
suggesting again that motor 1 may have a dominant ego-noise
compared to motor 2.

Figure 5 also shows the mean of the RMSEs of the three
sequences combined. Here we can see that the performance
of the three different models is very similar, being the inverse
model with the auditory features of 20 dimensions (IM20)
slightly better than the other two models.

B. Experiment 2

Figure 6 shows the motor commands predicted by each
model during the imitation of the ego-noise played by the
loudspeaker. Playing the ego-noise from loudspeakers de-
creased the performances of the inverse models in most of
the conditions. However, it can be noted that the models were
still capable to imitate the command sequences. From the runs
of the command sequence 1, it can be seen that the models
IM10 and IM20 were not able to predict the highest speed
commands, being the model IM05 the one that showed a
slightly better performance. It is worth noting that the effect
of the dominance of motor 1 was still present in the imitation
runs of the sequence 2. Another important observation is
that the motor commands generated by the models IM10
and IM20 in the sequences 1 and 3 were not capable of
adopting the shape of the original sequence of commands,

which resulted in similar command predictions for motors
1 and 2 in both sequences. Figure 7 shows the root mean
squared error (RMSE) during imitation of the eight runs for
each sequence as well as the mean error of the three sequences
combined. The plots show an increment of the prediction
errors with respect to the errors calculated in the experiment
1. The mean RMSE of the three different models is also
very similar, but in this case the inverse model with auditory
features of 5 dimensions (IM05) had a better performance.

C. Assessing similarity of sounds

In order to compare the different sounds used in our exper-
iments, we obtained the Mel-Frequency Cepstral Coefficients
(MFCCs) from every recorded audio data and applied the t-
sne algorithm for dimensionality reduction and visualisation.
Each audio was divided into 18 windows, of which a set of 12
MFCCs was calculated, resulting in a 216 dimensional vector.
Figure 8 shows the 2-D visualisation of the features of the
sounds generated by the models IM05, IM10 and IM20. The
colors of the markers represent the command sequence that
generated that sound (red, green and blue for sequence 1, 2
and 3, respectively). From them, four different kinds of audio
can be shown:

1) Ego-noise generated by the robot while executing a predefined
motor sequence (AR), represented by circle markers 1, 2 and
3.

2) Ego-noise generated by the robot while imitating a previously
executed motor sequence (IAR), represented by the x markers
4, 5 and 6.

3) Prerecorded ego-noise (also generated by the robot) played by
a loudspeaker (AL), represented by the diamond markers 7, 8
and 9.

4) Ego-noise generated by the robot while imitating the audio
played by the loudspeaker (IAL), represented by the + markers
10, 11 and 12.

It can be seen in 8 that the AR audio formed three different
clusters, which is consistent with the sequences 1, 2 and 3.
The imitation audio IAR also formed three clusters that are
close to the respective imitated audio sequences. The AL audio
(played by the loudspeakers) appeared on the other side of
the plot, far from the audio generated directly by the robot,
however the position of the clusters coincided in the vertical
dimension with the clusters of the AR audio. It is worth noting
that the audio generated by imitating the ego-noise played on
loudspeakers (IAL) appeared far from AL but close to the AR
audio, forming also three different clusters. Another important
observation is that the IAL audio clusters for sequences 1
and 3 of models IM10 and IM20 were not well differentiated
from each other, while the IAL clusters of the inverse model
IM05 were more separated from each other. This suggests that
IM05 had better performance imitating the audio played by the
loudspeakers.

V. CONCLUSION

In this study, we presented a multimodal learning archi-
tecture that allows a robot to imitate a previously executed
sequence of motor commands by listening to its ego-noise
and also to the prerecorded ego-noise played by a loudspeaker.



Fig. 4. Plot of two of the eight real ego-noise imitation runs of the command sequences 1, 2 and 3. The filled areas represent the original motor commands.
The purple, orange and cyan lines represent the imitation commands executed by motors 1 and 2 of inverse models IM05, IM10 and IM20 respectively.

Fig. 5. Mean of the real ego-noise imitation errors (RMSE) obtained from the eight runs of the sequences 1, 2 and 3 with the inverse models IM05, IM10
and IM20. On the right, the mean RMSE of the combined sequences is depicted. The error bars show the 95% confidence interval of the mean.

Fig. 6. Plot of two of the eight prerecorded ego-noise imitation runs of the command sequences 1, 2 and 3. The filled areas represent the original motor
commands. The purple, orange and cyan lines represent the imitation commands executed by motors 1 and 2 of inverse models 05, 10 and 20 respectively.

Fig. 7. Mean of the prerecorded ego-noise imitation errors (RMSE) obtained from the eight runs of the sequences 1, 2 and 3 with the inverse models IM05,
IM10 and IM20. On the right, the mean RMSE of the combined sequences is depicted. The error bars show the 95% confidence interval of the mean.

In particular, inverse models were adopted as computational
tools for encoding robot knowledge about its ego-noise and its
motor system. We applied a convolutional autoencoder for a
semi-supervised feature learning and dimensionality reduction
of the auditory signals. In the experiment, we tested three
inverse models with three convolutional autoencoders, each
characterised by a different dimensionality of the latent space:
5, 10 and 20. By comparing the root mean squared errors

(RMSE) calculated from the imitation of the motor command
sequences, we detected a better performance of the model
IM20 in the experiment 1 and of the model IM05 in the
experiment 2. This was consistent with the analysis results of
the audio data generated in the imitation experiments, which
indicated that the model IM20 (model with autoencoder code
of 20 dimensions) had a better performance when the robot
imitated previously executed command sequences (experiment



Fig. 8. 2-D visualisation of the original and imitation audio generated from the experiments 1 and 2 with models IM05, IM10 and IM20. Points representing
the audio recorded while performing sequence 1 are in red. Points for sequences 2 and 3 are in green and blue respectively. The original audio produced
by the robot is represented by the circles (1,2,3). The audio obtained from the imitation of the audio produced by the robot is represented by the x markers
(4,5,6). The diamond markers (7,8,9) represent the prerecorded audio played by the loudspeakers. The audio generated from the imitation of that played by
the loudspeakers is represented by the + markers (10,11,12)

1), and that the model IM05 (model with autoencoder code of
5 dimensions) performed better when imitating prerecorded
ego-noise played by a loudspeaker (experiment 2). This im-
plies that, although a longer audio feature vector generates
a better internal model of the robot, it also diminishes the
generalization performance.

In the experiments presented in this paper, we trained the
CAE and the inverse models separately. We are currently
carrying out experiments on training both CAE and IMs in the
same run, by connecting the output of the encoder to the input
of the inverse model. We expect this solution to outperform
the current one, as we expect the feature learned by the CAE
to be optimised to reduce the prediction error of the inverse
model. On the other hand, we believe that the current solution
provides better generalisation capabilities to the model, as the
CAE features are not specific to the particular inverse model.
In specific implementations, several issues need to be consid-
ered. In particular, two motors and wheels are never exactly
the same and produce slightly different noise patterns. In our
implementation, this allows for the system to learn specific
features of the motors and distinguish between them, but might
cause problems in an imitation experiment with a different
robot. In theory, M1 and M2 produce the same sound features,
which makes it impossible to predict M1 and M2 for differ-
ent motor velocities. This could be avoided by introducing
alternative symmetric motor features M3 = |M1 −M2| and
M4 = M1+M2 which contain curvature and speed measures.
In this work, we used the encoding section of an autoencoder
as an audio feature extractor that fed an inverse model. In
further experiments, we will use the decoding section of the
autoencoder for converting the audio feature codes (the output
of a forward model) into the complete ego-noise frequency
spectra. With this, we expect the robot to be able to distinguish
its ego-noise from the ego-noise of other robots. This is a
feature that can be useful in tasks involving swarm robotics
and learning by imitation.
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