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On the Sense of Agency
and of Object Permanence in Robots

Sarah Bechtle1, Guido Schillaci2 and Verena V. Hafner2

Abstract—This work investigates the development of the sense
of object permanence in humanoid robots. Based on findings
from developmental psychology and from neuroscience, we link
the mechanisms behind the development of the sense of object
permanence to those behind the development of sense of agency
and to processes of internal simulation of sensory activity. In
this paper, we present two experiments. First, a humanoid robot
has to learn the forward relationship between its movements
and their sensory consequences perceived from the visual input.
In particular, we implement a self-monitoring mechanism that
allows the robot to distinguish between self-generated movements
and those generated by external events. In a second experiment,
once having learned this mapping, we exploit the self-monitoring
mechanism to suppress the predicted visual consequences of
intended movements. We speculate that this process can allow for
the development of the sense of object permanence. We will show
that, using these predictions, the robot maintains an enhanced
simulated image where an object occluded by the movement of
the robot arm is still visible, due to sensory attenuation processes.

I. INTRODUCTION

Adults usually do not have any difficulty in recognising their
own body and their own movements. This apparently simple
skill is, however, very important to efficiently and naturally
interact with the environment and with people. Interacting with
objects, for example, would not be that easy, if we were not
aware of our body and of the consequences of our actions.
However, the mechanisms behind the capability to recognise
ourselves are not fully understood. Researchers suggested that
self-recognition requires at least awareness of one’s body and
one’s actions [1]. In particular, self-awareness would have two
important aspects: a sense of ownership - that is the sense
that it is my body that is moving - and a sense of agency -
that is the sense that I am the initiator of the movements and
of their consequences [2]. One of the proposals that explain
the sense of agency states that our brain implements a self-
monitoring mechanism that constantly anticipates the sensory
consequences of our actions [3]. Sense of agency would be
therefore dependent on the congruence between predicted and
observed sensory outcomes of bodily actions.

In this paper, we present an implementation of a self-
monitoring mechanism that allows a humanoid robot to an-
ticipate the sensory consequences of self-generated move-
ments. We show that the predictive processes implemented
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by such a mechanism can lead to the distinction between
self-generated actions and those generated by an external
subject. In addition, we speculate that the same self-monitoring
mechanism adopted for distinguishing between self-generated
movements and those generated by other individuals - which
could produce markers for a sense of agency - may be behind
the development of a sense of object permanence. We present
a robotic experiment in support for this assumption.

The rest of the paper is structured as follows. Firstly, we
provide a brief introduction to self-recognition (section I-A),
to sense of object permanence (section I-B) and to related
robotics works (section I-C). Then we present the experiments
in section II and the results in section III. Finally, we discuss
the outcomes of this study in section IV.

A. Self Recognition

How are we able to recognise ourselves? Researchers sug-
gested that our brain implements an active process that refers
the body part we observe to a representation of the whole
body [1]. This representation of the body that would allow
the experiencing of the self is known as body image [1], [2],
[7]. Developmental psychologists suggest that self awareness
develops over time from very early stages of development. As
the development of self-awareness unfolds (already around the
age of two months, as suggested by Rochat [6]), infants start
having a sense of how their own body is situated in relation to
other entities in the environment. Infants at 5 months of age,
for example, are already able to distinguish between their own
leg movements from those of another infant, when they are
displayed in a mirror [6]. By the second year, when linguistic
competences start to come into play, self-awareness remains
implicit. The sense of agency is thought to be an important
aspect of self-awareness. This experience has been proposed to
be dependent on the degree of congruence between predicted
and actual sensory consequences of our bodily actions [3].
Our brain is thought to implement predictive processes that
anticipate the sensory outcomes of our motor actions. Experi-
encing an action as self-generated would be therefore caused
by the anticipation and, thus, the attenuation of the sensory
consequence of such a motor action, which would be allowed
by “the privileged access [that our brain has] to internally
generated efferent information during one’s own action” [8].
Researchers proposed that sensory attenuation would be the
result of a self-monitoring mechanism implemented by our
brain, whose existence would explain, for example, why
tickling sensations cannot be self-produced [9] or why people
perceive the loudness of sounds as less intensive when they are
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self-generated than when they are generated by other people
[8].

Inspired by the studies mentioned above, we implemented
a self-monitoring mechanism in a humanoid robot for the
prediction and attenuation of the sensory consequences of self-
generated actions. In section III-A, we will show how these
processes can enable the distinction between self-generated
movements and those generated by external entities.

B. Object Permanence

Many cultures share a popular game, where adults play
with infants by hiding their face with the hands and, all of
a sudden, showing it back to the kids by saying an utterance1.
This game seems to demonstrate the difficulties that infants
have in understanding object permanence at early stages of
development. Some researchers claim that young infants do
not understand that an object’s existence continues even if
the object itself is covered: “out of sight is literally out of
mind” [10], [11]. Even though in the literature there is a widely
divergent conclusion about how and when object permanence
develops [5], [11], [12], [13], Piaget [14] states that by the age
of 18-24 months children fully understand object permanence
and therefore children first need to be able to recognise their
own body as a separate entity in the world in order to be
able to understand object permanence. Investigations on the
correlation between self-agency and object permanence can
be found in the literature in developmental psychology [4],
[6], [2]. In this paper, we assume that the self-monitoring
mechanism behind the development of sense of agency can
allow as well for the development of a sense of object
permanence. In particular, we show a robotic experiment in
support for this assumption.

How do we test if children understand object permanence
or not? What happens in our brain when an object is oc-
cluded? In cognitive science, most of the studies correlate the
understanding of object permanence to the looking times at
possible or impossible occlusion events [11], [12], [13]. In the
neurosciences, researchers looked at the EEG signals during
occlusion of an object. Consistently over multiple studies [10],
[15], a burst of gamma band EEG activity over the temporal
lobe was measured during an occlusion event and whenever
an object was expected to appear from behind the occluder.
Gamma oscillations are thought to be related to active mental
representations of objects [10]. Therefore, researchers con-
cluded that the aforementioned burst is related to the infant’s
mental representation of the occluded object [10]. This brings
Kaufman et al. [10] to conclude that increased looking time at
an impossible event may not be related to object permanence
itself but more to a conflict between the actual visual input
and the current mental representation of an object.

In this paper, we show how a robot equipped with a self-
monitoring mechanism - implemented for distinguishing be-
tween self-generated movements and those generated by other

1”Peek-a-boo” is the English name of this game. The utterance may change
from language to language.

individuals or events - can maintain a mental representation
of an occluded stationary object. By executing predictions
of the sensory consequences of the motor actions, the robot
brain is able to attenuate the movements from the visual
input and to generate an enhanced simulated visual input,
where the originally occluded object is actually still visible.
We speculate, therefore, that mechanisms for self-monitoring
and for sensory attenuation, which would be requirements for
having a sense of agency, are also behind the development of
a sense of object permanence.

C. Related Works

In this section, we introduce robotics studies related to the
topics mentioned before.

In a visuo-motor coordination study, Saegusa et al. [16]
show how a robot can learn to recognise its own body,
implementing a function that correlates the visual input to
the arm/head proprioception of the robot. In particular, the
authors monitor the correlation between the speed of a moving
blob in the camera image and the proprioceptive input. Every
time this correlation exceeded a certain threshold, the visuo-
motor information is stored in the memory of the robot. The
proposed system can allow the robot to query the visuo-motor
memory, for example for finding the arm configuration that
resulted in high visuo-motor correlation to the current head
position, leading the robot to move the arm into its visual
field. The same memory also provides a cue for predicting
the appearance and location of body parts by predicting the
expected visuo-motor correlation of the current body posture.

Michel et al. [17] presented also a motion-based approach
for robotic self-recognition. They use a characteristic time
window between the initiation of a motor movement and the
perception of arm motions to learn self-generated actions.
Their implementation of self-recognition conceptually consists
of two components. One module incrementally learns the
characteristic time delay in the action-perception loop from
a sequence of random arm motions within the visual field. A
separate classification module uses the learned delay model
to identify newly occurring moving objects that satisfy the
delay window (thus conceptually belonging to the self). Pitti
et al. [18] presented a biological plausible model of spike-
timing dependent synaptic plasticity for the emergence of self-
agency. In the model, different maps encoded different modal-
ities, including the visual one. Connections between maps
are strengthened whenever there is a simultaneous spiking
activity. The model is used for executing sensory predictions
of intended motor commands. The authors measured the level
of self-agency analysing the error between the predicted and
observed sensory information.

Weng et al. [19] and Chen et al. [20] studied the de-
velopment of sense of object permanence in robots. Both
papers used an approach based on a novelty parameter leading
the robot to look longer at new situations. As mentioned
in section I-B, increased looking times can be a possible
evidence for the understanding of object permanence in psy-
chology experiments. In typical experiments, young children
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are presented with an object that moves along a track part of
which is occluded. If infants understand object permanence
they should expect that the object continues to pursue its
trajectory behind the occluder and to reappear on the other side
of the occluder [11]. This paradigm is tested with impossible
and possible events. In the case of impossible events, the
trajectory of the moving object is obstructed by an obstacle
behind the occluder, but the moving object still reappears on
the other side of the occluder [11], [12], [13]. Looking time
is used as a measurement for the development of sense of
object permanence (prolonged looking time corresponds to
impossible events). This experimental approach to test whether
object permanence is developed or not, was also used by Chen
et al. [20] in a robotic experiment where they calculated a
novelty parameter depending on the novelty of a situation.
In their experiment, the robot would turn its head whenever
the novelty parameter would fall below a certain value. They
measured the time the robot looked at a specific situation
before turning the head. This looking time was an indicator for
development of sense of object permanence. Although Chen
et al. [20] could measure increased looking time at impossible
events whenever impossible events were presented first, they
could not show increased looking time at impossible events
when they were shown after the possible event.

II. METHODOLOGY

In this work, we want the robot to learn what the sensory
consequences of its own motor actions are. In particular, the
task for the robot is to look at its own movements and to
learn the mapping between the motor commands and the
movements detected from the visual input. The initial phase
of the experiment consisted in training a forward model. A
forward model is a type of internal model that can predict the
sensory consequence of an action [21]. As shown in figure
1, a forward model takes as input the current sensory state
S(t) and the motor command M(t) and outputs the predicted
sensory state S∗(t+ 1).

Forward
Model

Sensory state (t)
Predicted sensory state (t+1)

Motor command(t)

Fig. 1: Schematic representation of a forward model.

A forward model can encode the motor characteristics of
the system. Here, we trained the model with sensorimotor data
generated executing a self-exploration behaviour (see section
II-B). Once having learned the mapping between motor com-
mands and perceived movements, the forward model can be
used for implementing a self-monitoring mechanism. Sensory
states, such as movements in the visual input, can be predicted
- or anticipated - if we feed the forward model with the current
sensory state of the system and the intended motor command.
Therefore, the predicted sensory state can be compared to
the observed one, producing a prediction error that can be
monitored, for example, for detecting the occurrence of an
unexpected event. The capability of the forward model to
anticipate sensory states, such as movements in the visual

input, can be also exploited to suppress the predicted visual
consequences of intended movements from the actual visual
input. We speculate that a similar mechanism can allow for the
development of the sense of object permanence. We will show
that using these predictions, the robot maintains an enhanced
simulated image where an object occluded by the movement
of the robot arm is still visible, due to sensory attenuation
processes.

A. Robotic Platform

An Aldebaran Nao humanoid robot with 25 degrees of
freedom was used. Nao has 5 joints on each of its arms and
two HD cameras positioned on the forehead and on the chin
of the robot head. In the experiments presented in this paper,
only 2 of the 5 joints of the left arm were used, namely
the elbow joints (roll and yaw). Built-in functions (NAOqi
SDK v1.14.5) were used to control the joints. From these
two joints, information about the sensory state S(t) and the
motor commands M(t) was extracted, as explained in the next
section. As an additional sensory modality, and for encoding
S(t+1), we recorded the visual input from the upper camera
of the robot.

B. Experimental Setup

The experiments presented in this paper have been carried
out using the Cyberbotics Webots robot simulator. Before
starting each experiment, the head of the Nao was slightly
turned to the left (by 0.3 and 0.1 radians), in order to have
a better view of the movements of its left arm. A learning
session was performed, consisting in the robot executing a
self-exploration behaviour for gathering sensorimotor data.
We adopted a simple random walk exploration behaviour in
the joint space. Observations consisted in mappings between
motor commands and sensory data. The exploration behaviour
has been implemented as follows. At a certain point in time
t, an action M(t) consisting in a rotation of each of the
two elbow joints (sampled from a Gaussian distribution with
mean 0.0 and standard deviation 1.0), was applied from the
current elbow joint configuration S(t). S(t) and M(t) con-
stitute the sensorimotor context at time t. After the execution
of M(t) from the current joint position S(t), new sensory
information S(t + 1) was gathered from the visual input,
containing the information about perceived movements within
the Nao’s visual field of the upper camera. The images from
the camera were collected with a frame-rate of 5 frames per
second. Images were collected in the RGB colorspace and then
converted into gray scale. The size of the images was 320×240
pixels. The sensorimotor context (S(t),M(t)), as well as the
observed sensory outcome S(t+1), was collected and saved.
In section II-C, we will present in detail how we performed
the movement detection and the feature extraction process
for estimating S(t + 1). In section II-D, we will present the
model architecture that we used for learning the sensorimotor
mappings.
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C. Movement Detection and Feature Extraction

The sensory consequences S(t + 1) of motor movements
M(t) have been represented by the movements detected from
the visual input. In particular, we implemented a motion
detection algorithm using the computer vision library OpenCV
v2.4.11, in order to allow the robot to visually detect the
movements of its hand. Movement detection was performed
on gray scale images grabbed from the Nao upper camera.
In particular, the absolute difference between two consecutive
blurred images is calculated and a threshold is applied to
segment out the moving parts of the image. The image size was
320× 240 = 76800 pixels. The outcome of the initial step of
feature extraction resulted therefore in a feature vector of size
76800. In order to decrease the dimensionality of the feature
vector encoding S(t + 1), we applied a 20 × 20 grid to the
difference image. Every dot of the grid stores the sum of all the
neighbour pixels that are moving in the surrounding square.
By applying this, we were able to reduce the dimensionality
of S(t+ 1) to 400 elements.

D. Model Architecture

We aim at learning the forward relationship between the
robot actions and the resulting sensory consequences. As
mentioned before, a forward model can be used to predict
the sensory consequences of movements and to generate
prediction errors, when predictions are compared to actual
observations. In particular, the forward model we want to train
implements the following mapping:

(S(t),M(t)) −→ S(t+ 1)

In this work, training consisted simply in gathering all the
sensorimotor data into a knowledge base. Predictive processes
were instead implemented using a simple k-nearest-neighbor
(k-NN) algorithm. In particular, a prediction is executed as
follows. An input consisting of S(t) and M(t), that is the
current elbow joint configuration and the rotations that the
system wants to apply to the joints, is fed into a search
algorithm. The k training examples closest to the input in the
S(t) and M(t) space are extracted. The corresponding values
of S(t+ 1) in the k nearest neighbors are thus averaged and
presented as the output of the prediction. In the experiments
presented here, we used k = 3.

In the training phase, the forward model learns the mapping
between motor commands and the movements detected from
the visual input. Once the model is trained, we run processes
of sensorimotor predictions feeding the forward model with
input data gathered during the robot movements. Moreover,
prediction errors can be computed by comparing the predicted
sensory state S∗(t+1), that is the predicted vector representing
the movements in the visual input, to the actual one, that
is S(t + 1). According to the studies mentioned in the
introduction of this paper, prediction errors, as a result of
sensory attenuation processes, could represent a cue for sense
of agency.

In the following, we will present two experiments. In the
first experiment (section III-A), we show an implementation

of a self-monitoring mechanism, which computes prediction
errors and adopts them as a cue for the sense of agency.
The sense of agency, as mentioned in the introduction of this
paper, is thought to be dependent on the level of coherence vs.
incoherence of sensory predictions and sensory observations.
In the experiment, we execute sensory predictions using the
forward model trained as explained before and we perform
sensory attenuation by subtracting the predictions from the
actual sensory observations. We foresee that whenever an
unexpected event is detected from the visual input, such as
an external agent moving in the environment, we will observe
an increase in the prediction error.

In a second experiment (section III-B), we implement
sensory attenuation processes, where sensory predictions are
subtracted from actual sensory observations. Sensory attenua-
tion, which in the current experiment is performed in the visual
domain, generates enhanced images where the movements of
the robot are attenuated. This leads to situations where station-
ary objects positioned in front of the robot, which in normal
cases would be just hidden by the body of the robot itself, are
still visible in the enhanced image. We speculate, therefore,
that sensory attenuation processes produced by self-monitoring
mechanisms could be at the basis of the development of the
sense of object permanence.

III. EXPERIMENTS AND RESULTS

In the following section we will present the experiments
performed and the obtained results. Firstly, we will look at
the question related to self-agency; therefore, we will discuss
the experiments and results regarding object permanence. The
prediction error at time t+1, that is e(t+1), between the actual
sensory outcome S(t+ 1) and the predicted sensory outcome
S∗(t+ 1), was calculated in all experiments as follows:

e(t+ 1) =

√√√√ n∑
i

(S(t+ 1)− S∗(t+ 1))
2

where i represents one of the n = 400 regions in the visual
input, as described in section II-C.

A. Sense of agency

In this section, we show a series of experiments where
we ran sensorimotor simulation processes under two different
conditions. In the first condition, only the robot is present in
the scene. While executing different robot behaviours, we ran
sensorimotor predictions by feeding a trained forward model
with the sensorimotor data gathered during the movements.
In a second condition, we had the robot executing the same
behaviours and the same prediction processes, although this
time facing a moving object. As we will show at the end
of this section, prediction errors are higher under the second
condition than under the first one, due to the unexpected
event of a moving object detected from the visual input.
We argue that this phenomenon is resembling those argued
by the behavioural studies introduced at the beginning of
this paper, suggesting that self-monitoring mechanisms and
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Fig. 2: A sample trajectory of the robot arm. The first row
shows the actual sensory outcome that encodes the movements
of the robot detected from the visual input; the second row
shows the original sensory outcome attenuated using the
predictions from the forward model; the third row shows
how the sensory attenuation, as in the previous row, looks
like when there is an object moving in the background.
A coloured dot represents the centroid of a region where
a movement has been detected. The transparency of a dot
encodes the number of pixels in that region that are moving
(fully opaque: all pixels are moving; fully transparent: no
movements detected). As evident from the second and third
sequences, sensory consequences of self-generated movements
are better attenuated than those produced by other agents in
the environment.

sensory attenuation processes may be behind the development
of a sense of agency in robots.

The robot behaviours executed in this experiment consisted
in arm movements where only two joints of the left arm were
activated (the elbow joints, as described above). In particular,
we implemented 7 different robot behaviours: three behaviours
consisted in random movements of the left arm that were
observable from the visual input of the robot; two behaviours
consisted in random movements of the left arm not visible
from the robot camera; one behaviour consisted in the robot
holding its arm in an idle position visible from its camera;
the last behaviours consisted in the robot holding its arm in
an idle position not visible from its camera. The 7 different
behaviours have been run under two conditions: (1) robot alone
in the scene and (2) robot facing a moving object. During
the execution of each of the behaviours, we fed the forward
model with the sensorimotor data gathered from the robot and
executed sensory predictions in the visual domain, producing
vectors of prediction errors, E = e1, e2, ..., eT . As depicted
in Table I, we observed, for each behaviour, a statistically
significant difference between the mean of the prediction errors
under the first condition (robot alone in the scene) and the
mean of the prediction errors under the second one (robot
facing a moving object). All the p-values of the t-tests we
have run resulted to be smaller than 0.05 showing that, in
all cases, the null hypothesis has been confirmed and that the
two conditions produced a statistically significant difference
in the averages of the prediction errors. As expected, in each

TABLE I: The t-test results for the robot behavior in the two
conditions (robot alone vs. robot not alone in the scene).

Behaviour p-value Condition 1 Condition 2
MEAN STD MEAN STD

1 1.86e−5 (t=-4.31) 4.60 3.7 5.07 4.19
2 6e−10 (t=-6.27) 2.91 3.48 4.10 3.93
3 2.82e−2 (t=-2.20) 5.95 4.64 6.70 4.60
4 1.12e−27 (t=-11.36) 0.0 0.0 1.88 3.17
5 1.09e−50 (t=-16.20) 0.0 0.0 2.0 2.35
6 1.40e−25 (t=-10.85) 0.0 0.0 1.28 2.25
7 2.10e−29 (t=-11.76) 0.0 0.0 1.87 3.05

Fig. 3: Comparison between imaginary (bottom) and real
frames (top) showing that, in the enhanced images, the red
ball is still visible, although it is actually hidden by the Nao’s
hand.

of the seven different behaviours, the mean of the prediction
errors resulted to be lower under the first condition (only the
robot is moving in the scene), than under the second one (both
the robot and an external object are moving in the scene).
Figure 2 illustrates a sample trajectory of the robot arm. In
particular, the second row shows the result of the sensory
attenuation produced by subtracting the predictions of the
forward model from the real sensory observation (first row).
The third sequence shows how the attenuation looks like when
there is an object moving in the background. As expected,
the forward model is not able to predict these movements,
and thus the system cannot attenuate them. This demonstrates
that the predictive capabilities of forward models and the
prediction errors they produce could be adopted for detecting
movements produced by external agents. This is in line with
the argumentations presented at the beginning of this paper
related to sensory attenuation as a cue for the sense of agency.

B. Object Permanence

In a second experiment, we show how sensory predictions
and sensory attenuation may lead as well to the development
of a sense of object permanence. Inspired by the findings of
[10], we created enhanced images where the movements of
the robot are attenuated using the sensory predictions of a
self-monitoring mechanism implemented through a forward
model [9]. The experimental setup is shown in figure 3. The
robot executes a random arm trajectory in front of an orange
ball. Using the prediction of a forward model, the robot was
able to attenuate its movements from the visual input, by
replacing the pixels where the movement of the arm was
expected with the corresponding pixels of a background image
collected at the beginning of the experiment. We quantified the
visibility of the ball, that is we measured how often the robot
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TABLE II: The percentage of frames where the ball was visible
in the imaginary compared to the real image.

Traject. Ball Position 1 Ball Position 2 Ball Position 3
Real Imaginary Real Imaginary Real Imaginary

1 71% 87% 74% 93% 83% 92%
2 87% 99% 85% 98% 96% 100%
3 79% 98% 77% 97% 82 % 96%
4 90% 94% 89% 99% 92% 99%
5 70% 88% 69% 89% 86% 75%

would perceive the ball from the enhanced visual input and
from the real one. A video of a test sequence can be found
at https://youtu.be/WKyZGcSCFak, which shows the actual
visual input against the enhanced one. As evident from the
video and from figure 3, the sight of the ball is occluded by
the robot movements in the real visual input, but this is not
always the case for the enhanced visual input. This is in line
with what Kaufman et al. [10] and [15] suggest is happening
in our brain during object occlusion. In Table II, the results
for 5 different arm trajectories and 3 different locations of the
ball are presented. For each trajectory and for each position
of the ball, the percentage of frames (on average 150 frames
per trajectory) where the ball was detected was always higher
in the imaginary sequences than in the real ones.

IV. CONCLUSIONS

Processes of sensory prediction and sensory attenuation
have been proposed by studies in psychology and neuroscience
as having an important role in the development of the sense
of agency and of the sense of object permanence. The ex-
periments and the results presented in this work are in line
with these findings. In particular, we investigated how self-
monitoring mechanisms implemented through forward models
can make a robot able to distinguish between self-generated
movements and those generated by others, and to create
mental representation of objects occluded by self-generated
movements.

However, further research is needed in order to strengthen
what has been argued in this work. Firstly, future experiments
should address more complex sensory and motor spaces and
more ecologic settings (e.g. more complex visual scenes, real
robotic experiments, etc.). In the experiments presented here,
in fact, only the movements of few joints of the robot’s left arm
have been taken into consideration, as well as only the visual
modality. Although the scientific community recognises to the
visual modality a prevalent role in self-recognition, several
works assessed manifestations of self-recognition also in other
modalities. Robots represent a perfect test bed for investigating
these phenomena.

The study of the development of the sense of object per-
manence should not be limited either to self-occluding events
of stationary objects. Further investigations on this topic will
be carried out. Nonetheless, the experiment we presented has
a particular value in robotics and in psychology. The internal
images generated by the proposed computational model cannot
simply be observed with any neuroscientific or psychology

technique. The ability to directly visualize enhanced images
under the conditions of the simulation - or, more generally,
to generate and to observe enhanced sensory information -
can have potential applications and advantages as compared to
many indirect techniques in the neuroscience and psychology.
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