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Abstract— Visuo-motor coordination is known to be highly
important for the development of a broader range of cognitive
and motor skills in human infants and can thus be considered
one of the key skills for robots to master.

In this paper, we investigate how a recent concept in
developmental robotics, referred to as goal babbling, relates
to a visuo-motor coordination task in the humanoid robot
Aldebaran Nao that requires coordinated control of two sub-
systems of motors, namely head and arm motors. The idea of
goal babbling builds on findings in developmental psychology
showing that human infants attempt goal-directed movements
early on in their development enabling them to rapidly and
efficiently bootstrap their motor system. Goal babbling has
been shown to be superior to the classical idea of random motor
babbling for the learning of body kinematics in robotic systems,
in particular for systems with many degrees of freedom.

Our results not only support the utility of goal babbling
for the acquisition of visuo-motor coordination skills but also
suggest that goal babbling is particularly effective in the case
where two separate motor sub-systems, head and arm, need to
be coordinated.

I. INTRODUCTION

Control of movements and coordination of different parts
of the body are a fundamental prerequisite for the devel-
opment of complex motor and cognitive skills in humans,
as reported in several studies in developmental psychology.
Rehearsal of motor control through exploration behaviours
has been observed already during pre-natal stages of devel-
opment in foetuses [1]. Early coupling between visual and
motor systems in infants has been reported and investigated
also by Tükel [2]. Yu et al. suggested that there is a cor-
relation between the development of hand-eye coordination,
learning capabilities and social skills in humans [3].

Nonetheless, sensory-motor coordination, the ability to
achieve desired sensory outcomes by means of an agent’s
own actions, is a key ability also for modern robots. In
control theory, a prototypical instance of sensory-motor
coordination is the ability of a robot to control its end-
effector in a 2- or 3-dimensional task space by actions in an
m-dimensional motor space. To effectively do so, the robot
firstly needs to be able to predict the sensory outcome x of
a motor action q, known as the forward model f : Q → X
where X and Q refer to the task space and motor space,
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respectively. Secondly, the robot needs to be able to infer
a motor command q̂ to achieve a desired sensory outcome
x∗, known as the inverse model g : X → Q. Developmental
robotics asserts that, for real-world, high-dimensional, redun-
dant and possibly non-stationary robots, motor coordination
skills need to be acquired through autonomous exploration,
i.e. by generating samples (q, x) of the unknown forward
and inverse function through an incremental learning process.
This holds in particular for soft robotics with highly non-
linear control. One class of exploration strategies, referred
to as motor babbling, focuses on exploring the motor space
Q: Motor actions are chosen and successively executed and
their sensory outcome is observed.

In recent publications [4][5], we showed how a humanoid
robot can acquire hand-eye coordination and reaching skills
by exploring its movement capabilities through random body
babbling and by using a biologically inspired internal model
of the robot body. The random babbling approach, however,
is limited by the fact that high-dimensional motor spaces can-
not be exhaustively explored and, additionally, exploration of
these spaces is often redundant as many different actions map
to the same sensory outcome. Therefore, a recent concept,
referred to as goal babbling, proposes to explore the sensory
space X directly by goal-directed actions: The agent chooses
goals x∗ from the sensory space and infers actions q̂ to reach
them based on the knowledge acquired up to that point,
updating the inverse and forward model on the fly. The idea
of goal babbling is inspired by findings from developmental
psychology showing that human infants attempt goal-directed
movements early on in their development [6].

Many publications have since demonstrated the utility
of goal babbling. To mention a few, Rolf & Steil [7]
demonstrated how goal-directed exploration of the task space
enables successful learning of the inverse function on a
challenging robot platform, the Bionic Handling Assistant.
Baranes & Oudeyer [8] did an extensive study comparing
different variations of goal and motor babbling strategies
on several simulated and robot platforms. Notably, they also
introduced a curiosity-driven learning scheme [9], [10], [8]
in which agents hold an interest measure for different subre-
gions of the explored space. Curiosity-driven goal babbling
was shown to be superior to other learning schemes in most
scenarios.

It should be noted that in these publications on goal
babbling as well as in the present study, the notion of goals
always refers to a specific typology of goals, namely to
the selection of coordinates in a defined, often cartesian,
workspace by a single expert system. We emphasize that the



formulation of goals as adopted here is not meant to capture
the entirety of the concept. Indeed, it is easy to identify
a wide range of topics not accounted for by this low-level
definition of goals, such as for example goals relating to the
interaction with external objects (e.g. [11]) and with other
agents and, furthermore, the existence of goals on different
behavioral scales for the planning of complex actions and
action sequences. However, we argue that the notion of goals
in motor control problems is nonetheless informative and can
potentially be extended to other contexts as well.

In this work, we implemented and compared different
exploration methods on the humanoid robot Aldebaran Nao
for the development of reaching skills using visual feedback
from one of its cameras. Experiments took place in the
Cyberbotics Webots simulator [12]. The difference to the
previously mentioned studies on goal babbling is the use of
an on-board instead of an external sensory system. Previous
studies used feedback from externally mounted cameras or
position information of a simulator to generate samples for
learning. Arguably, externally installed cameras are not as
compact and as mobile as the on-board visual systems that
today’s humanoid robots are equipped with. Using Nao’s
built-in camera for sensory feedback, however, poses an
additional challenge for learning. The visual range of Nao
is comparatively narrow for a fixed camera position. There-
fore, covering a substantial volume of end-effector positions
requires coordinated control not only of Nao’s hand but also
of its head. In turn, the learning problem in this case breaks
down into two concurrent sub-problems: 1) learning of the
inverse kinematics of the arm to control the position of the
end-effector and 2) learning of the inverse kinematics of the
head to be able to generate sensory feedback for 1).

We propose a two-level model architecture to tackle this
learning problem, introducing two separate inverse models:
one for the arm and one for the head kinematics. We
investigate the roles of motor babbling and curiosity-driven
goal babbling in this learning setup. To do so, a recently
published toolbox for robot exploration called Explauto [13]
was employed as part of the proposed architecture, demon-
strating its utility and its compatibility with the humanoid
robot Nao. Our results indicate an important role of goal
babbling for visuo-motor coordination tasks. Furthermore,
we illustrate how the two levels of the model relate to each
other and how a synergic relationship emerges between them
when the Nao robot explores in a curiosity-driven manner.

II. METHODS

A. Robotic Setup

Nao possesses 5 joints to control each one of its arms and
two HD cameras positioned on its chin and forehead. For the
following experiments, only the bottom camera, its 2 neck
joints (Head-Pitch and Head-Yaw), and 4 of the 5 joints in its
left arm were used (Shoulder-Roll, Shoulder-Pitch, Elbow-
Roll and Elbow-Yaw). Low-level built-in functions (NAOqi
v1.14.5 [14]) were used to control the joints in absolute
angles.

Fig. 1. Illustration of the robotic setup. A marker is placed on the hand
of the robot providing visual feedback of its end-effector position.

Sensory information was provided to Nao by placing a
marker tag of size 4cm × 4cm on the visible side of its
hand. The image and the spatial position of the marker
relative to the camera, serving as a proxy to the robot’s hand
position, was calculated using the computer vision library
ArUco [15]. To obtain absolute spatial coordinates from the
original relative coordinates, the data was transformed from
the camera frame to the torso frame via built-in functions.
In each iteration, head and arm movements were executed
as timed angle interpolations with gaussian velocity profile.
Each interpolation to a new motor position was fixed to take
5s, taking 20 samples of image and joint angle data at 4Hz
during execution. Learning models were updated batch-wise
on the 20 collected samples at the end of each movement.
All experiments took place in the Cyberbotics Webots [12]
simulator v7.4.3 and ran until 10, 000 movements were
executed (200, 000 samples collected).

B. Model architecture

First and foremost Nao’s task is to learn through explo-
ration the forward and inverse relationship between the joints
of its arm qA ∈ QA and the position of its end-effector
xS ∈ XS . To this end, the model comprises forward and
inverse functions g1 : XS → QA and f : QA → XS together
representing an internal model for the arm kinematics. It
is important to point out that we assume that the sensory
space XS explored by the robot’s arm is the body-centered
cartesian space as derived from identifying the position
(including depth) of the marker in the camera image. The
analysis of vision data was thus decoupled from the motor
learning and the existence of an extrinsic coordinate system
was taken as a given. While there is evidence that extrinsic
coordinate systems exist in the brain [16] (although critically
[17]), the question of how they could emerge during learning
was not addressed in this work.

The task of learning the functions g1 and f is equivalent
to the ones already discussed in the literature [8], [18], [7].
However, the learning task contains an additional challenge
as sensory feedback on the end-effector position is only
available to Nao if it can infer an appropriate head motor
command qH ∈ QH to center gaze on its hand. The proposed
model therefore introduces an additional mapping function



g2. This function maps image positions xI ∈ XI in retinal
coordinates to head motor commands qH ∈ QH . Addition-
ally, the model needs to be provided with some information
on what to focus on, which in our case is the dynamically
changing arm position. In this work, we decided to augment
the model with efferent copies of arm movements: g2 :
(QA, XI)→ QH . Formalized in this way, g2 infers, provided
with an efferent copy of the next arm movement, a motor
command for the head that will result in the marker ending up
at a desired image position. The validity of this approach is
supported by studies on gaze control in humans showing that
subjects incorporate proprioceptive and especially efferent
signals when anchoring gaze to pointing movements [19] and
are able to do so even in the absence of visual feedback [20].
An obvious disadvantage of this approach, however, is the
fact that the learned model does not readily generalize to gaze
control tasks not involving the arm, such as tracking objects.
Practically, this can still be done by translating a given object
location to a reaching movement via g1. This, on the other
hand, would mean to say that any gaze control is implicitly
a reaching movement, a stance we do not want to take up
in this work. We chose our formalization for its simplicity
and practicality but we also admit to the fact that other
formalizations would have been possible, such as invoking
the forward model f to translate the efferent copy to a 3-
dimensional location and training a gaze controller on those
locations. Summing up, the overall model thus comprises a
total of three mapping functions to be learned:

g1 : XS → QA (1)

f : QA → XS (2)

g2 : (QA, XI)→ QH (3)

These mapping functions need to be learned by Nao
through exploration. During the experiment, Nao will ex-
ecute head and arm movements and observe the sensory
consequences of these actions, thus generating observations
(qtA, q

t
H , x

t
I , x

t
S). These observations are then fed to a re-

gression model to obtain estimates of increasing precision
for the unknown functions f, g1, g2. Thereby the regression
models for g1 and f are updated on (qtA, x

t
S) while g2 is

updated on ((qtA, x
t
I), q

t
H). Note that g2 is different from

g1 in the sense that there is no causal relation between arm
configuration and head configuration. That is, while g2 infers
actions qA that achieve outcomes xS , g2 infers actions qH
that achieve outcomes xI given qA. Nonetheless, g2 describes
a valid, learnable and, also different from g1, non-redundant
mapping: for a given arm configuration qA, there is at most
one head configuration qH that will achieve xI . Thereby the
arm configuration is always provided by the arm controller
and represents an efferent copy of the next movement to be
executed, thus binding head movements to arm movements.

In principle, the proposed model architecture is indepen-
dent of the specific choice of the regression model. For
simplicity and because the primary goal of the present work
was to investigate the role of goal babbling and motor

babbling in the proposed learning task, a variation of the
k-nearest-neighbor algorithm, namely a weighted-nearest-
neighbor scheme with adaptive choice of k, was employed.
The regression model was provided by the Explauto frame-
work [13].

C. Goal Babbling and Motor Babbling

The terms goal babbling and motor babbling refer to
the type of exploration employed by the agent to generate
observations (qt, xt). In motor babbling schemes, exploration
focuses on the action space: Actions q are chosen from the
space of all available actions Q and then executed to observe
their sensory outcome x. As opposed to this, goal babbling,
a more recent concept, refers to the idea to explore the
sensory space directly by goal-directed actions. The agent
chooses goals x∗ from the sensory space X and tries to
reach them with an action it infers from its current inverse
estimate q̂ = g(x∗). Exploratory noise drives the execution
of previously unexplored actions in the vicinity of q̂. Note
that while the term action can in principle denote both low-
level motor commands as well as motor primitives (as e.g. in
some of the experiments in [8]) or even higher-level actions,
throughout this paper it is exclusively used to describe joint
angle commands.

This general setup can be transferred to the presented
variation of the learning task with a few modifications.
The idea is to understand exploration of head and arm
movements as two concurrent learning tasks which can both
be explored either via goal babbling or via motor babbling.
In the simplest case, both the head and arm kinematics
are explored via motor babbling. This means that in each
iteration Nao chooses actions for its head as well as for its
arm and then executes them, observing the sensory outcome,
i.e. image and spatial coordinates of the marker, if visible.
In this case, Nao is in pure exploration, learning passively
and not exploiting g1 or g2. In the second condition, head
movements are instead chosen in a goal-directed manner.
In this case, Nao chooses an arm movement qA in each
iteration and then tries to infer a head movement appropriate
for that arm movement, invoking g2 with the desired image
position x∗I acting as a goal: q̂H = g2(qA, x

∗
I). We refer to

this condition where g2 is exploited from the start as the
goal/motor babbling hybrid condition. Finally, exploration
can take place in a goal-directed manner on both levels. In
this case an end-effector position x∗S is chosen as a goal
and an arm movement q̂A = g1(x

∗
S) is inferred to reach

it. Exploratory noise η is added to q̂. Afterwards, a head
movement q̂H = g2(q̂A, x

∗
I) is inferred to achieve a desired

retinal position of the marker, again adding exploratory noise.
Exploratory noise on joint angles was Gaussian distributed
with zero mean and σ = 0.1rad. The chosen head and arm
movements in each iteration were executed simultaneously
as timed angle interpolations. All these approaches, i.e. the
goal babbling, the motor babbling and the hybrid approach
are again outlined as pseudocode (Algorithms 1, 2, 3).

An important part of the goal babbling architecture is
the way goals are chosen from the sensory space. In the



present scenario, this concerns both the goals x∗I and x∗S .
For simplicity, the goals in the image space were always
chosen to be the image center, i.e. x∗I = xcenterI . Note that
the other part of the input to g2, an efferent copy of the
arm configuration, is always provided by the arm kinematic
learner, never chosen independently. If the gaze kinematic
learner would operate independently, i.e. if the input to g2
was different from the actual arm movement to be executed,
then Nao would look for its hand based on meaningless
input and thus fail to find the marker even if g2 was learned
perfectly.

The goals x∗S were chosen from the space described as
XS = [0.0m; 0.25m]× [0.0m; 0.3m]× [−0.1m; 0.3m] which
was known a priori to be bigger than the reachable space. In-
stead of choosing goals randomly, they were chosen based on
a curiosity-driven learning schedule that was proposed in and
is provided by the Explauto framework [13]. Briefly outlined,
in this learning schedule, goals are chosen such that empirical
learning progress is maximized by partitoning the sensory
space and by sampling preferentially from subregions that
exhibit a decrease in learning error. To facilitate the calcu-
lation of this curiosity measure and to speed up the learning
process in general, the number of sensorimotor experiments
was increased by retrieving sensory and motor information
at a constant sampling rate during the interpolation to a new
motor position. Execution of each motor command was fixed
to take 5s and 20 observations were retrieved at 4Hz during
execution. In the case of goal babbling, each of the 19 in-
between observations was considered as a goal reached with
maximal precision.

Algorithm 1 Goal Babbling

1: f, g1, g2, t← 0
2: loop
3: choose x∗S , x∗I
4: q̂A ← g1(x

∗
s) + η

5: q̂H ← g2(q̂A, x
∗
I) + η

6: execute q̂A, q̂H
7: observe (including samples) xS , xI
8: if xS , xI is valid then
9: update models f, g1, g2

10: end if
11: t← t+ 1
12: end loop

D. Evaluation

All experiments were replicated 5 times for each of the
three conditions. Performance of the model was evaluated
under several aspects. Firstly, the development of Nao’s
visuo-motor coordination skills was assessed in terms of how
often the marker was detected in the camera image over
the course of the experiments. Secondly, it was evaluated
how well Nao covers the volume of reachable space with
observations. Lastly, the development of its reaching skills
was assessed over time. Unbiased estimation of how well

Algorithm 2 Motor Babbling

1: f, g1, g2, t← 0
2: loop
3: choose qA, qH
4: execute qA, qH
5: observe (including samples) xS , xI
6: if xS , xI is valid then
7: update models f, g1, g2
8: end if
9: t← t+ 1

10: end loop

Algorithm 3 Goal/Motor Babbling

1: f, g1, g2, t← 0
2: loop
3: choose qA
4: choose x∗I = xcenterI

5: q̂H ← g2(qA, x
∗
I) + η

6: execute qA, q̂H
7: observe (including samples) xS , xI
8: if xS , xI is valid then
9: update models f, g1, g2

10: end if
11: t← t+ 1
12: end loop

Nao can move its end-effector to desired positions in the
task space requires a set of testcases uniformly sampled from
the reachable space. However, in the given task, the space
of reachable positions is, on the one hand, constrained by
the properties of the arm and, on the other hand, depends on
coordinated gaze control. It is thus difficult to model a priori.
Instead, we obtained an approximation from data collected
in independent, long-running experiments of all babbling
types. This strongly non-uniformly distributed data set was
then resampled to an approximate uniform distribution. In
detail, a uniform grid of target positions spanning a volume
larger than the reachable space (regular spacing 5mm) was
constructed and each grid point was tested for reachability,
i.e. it was retained as long as there was at least one
observation from the indepedent data set not further away
than 2mm. As a result, 33539 grid points were retained and
are displayed in Fig. 2, illustrating the limits of reachability.
Black contour lines represent a qualitative estimation of the
perimeter. Of note, these contour lines do not represent
a systematic estimation of the reachable space but were
calculated only for the purpose of visualization. Each time
the reaching performance was evaluated, Nao was asked to
reach 200 testcases randomly chosen from the 33539 grid
points by its current inverse estimate, and the Euclidean
distance between desired and actual marker position was
considered as reaching error.



(a) goal babbling (b) hybrid (c) motor babbling

Fig. 4. Distribution of observations in a prototypical experiment for the goal babbling, motor babbling, and hybrid approach. Rows represent different
time periods of the experiment. Columns represent the 2D-projections of the 3D task space on the respective axes.

Fig. 2. Illustration of the reachable space. Plots correspond to the 2D
projections of the 3D sensory space. The x-axis is positive towards Nao’s
front, the y-axis is positive towards Nao’s left side and the z-axis is vertical.
Points represent reachable hand positions. Black contour lines illustrate the
reachable space qualitatively.

III. RESULTS

A. Marker Detection

One of Nao’s learning tasks is to learn its head kinematics
to generate the sensory feedback necessary for the learning
of its arm kinematics. The results (Fig. 3) show strong
qualitative and quantitative differences between the three
previously outlined settings. A prototypical replication is
shown. As expected, the pure motor babbling setting is
clearly inferior to the two other configurations in which
there is an active mechanism to center gaze on the marker.
This is simply due to the fact that the number of possible
arm configurations is large while the visual range of the
bottom camera is comparatively narrow. For random head
movements the robot’s hand will only occasionally cross
the visual field and thus the number of valid samples, i.e.
samples where the marker is inside the camera image, on
average only amounts to 3.1% of the total number (200,000)
of samples. Of note, this does not by itself imply an inferior
performance of the learned function g2 but is merely due to

Fig. 3. Plots show the frequency (upper plots) and cumulative number
(lower plots) of marker detections for the goal babbling, motor babbling
and hybrid approach. A prototypical replication of the experiment is shown.
Left plots show the initial phase of the experiment, right plots the whole
experiment. Goal babbling outperforms the other two approaches.

the fact that g2 is not exploited in this purely explorative
condition. However, a critical point in the present setup is
the generation of observations necessary to learn the arm
kinematics. It will be shown later that learning of the arm
model, relying only on the few samples generated by purely
explorative head movements, is inferior to the other two
approaches. The present findings therefore highlight the need
for exploitative head movements.

The other two settings with goal-directed head movements
perform better with 24.2% and 60.3% marker detection on



average for goal/motor and pure goal babbling, respectively.
The difference between these two approaches is striking as
both of them use the same mechanism for gaze control.
The explanation lies in the fact that the two learning tasks,
i.e. arm and gaze control, are not independent but instead
mutually depend on each other since they are bound together
by g2 and since both head and arm movements determine
which observations are made during learning. That is, if
Nao chooses arm movements in a goal-directed fashion, this
will also benefit the gaze control learning for the following
reason: Goal-directed exploration will focus on arm positions
where the learning progress is maximal. Learning progress
can only be made where there is sensory feedback and
thus where the head inverse model g2 has already acquired
some knowledge. This will automatically constrain Nao’s
arm movements to regions of the observation space that have
been uncovered also by the head model. Consequently, Nao
makes efficient use of the knowledge both inverse models
acquire over time. Or, in other words, goal-directed arm
movements allow the learning of gaze control to keep up
with the learning of arm control.

This, on the other hand, is not the case for the hybrid
approach. In the hybrid condition, arm movements are un-
constrained and thus extremely challenging for the head
model. The detection frequency is lower for two reasons.
The first reason is that the arm moving to random positions
will frequently end up in regions of the observation space
still unexplored by the head model. Secondly, many arm
positions are simply not mappable to an appropriate head
configuration at all since the workspace of the hand is larger
than the visual workspace. This concerns hand positions that
are too far up or too far down, causing Nao to run into
the limits of its neck pitch joint, and also positions that are
concealed by Nao’s own body, i.e. by its shoulder and its
chest. While curiosity-driven arm movements will refrain
from these positions lacking visual feedback, random arm
movements will not.

Fig. 3 illustrates the discussed effects quantitatively for
one prototypical replication. Initially, all the different ap-
proaches start out with random head movements - the inverse
models did not acquire enough knowledge to make any
predictions yet. Consequently, there are only occasional
detections. Once the number of detections surpasses a cer-
tain threshold that is determined by the specific regression
model (in the present case 13), the frequency of successful
detection increases for the two settings in which there is
an active mechanism for head movements. The increase is
particularly striking in the pure goal babbling setup. This
is due to the fact that, as mentioned earlier, goal-directed
arm movements will focus on subregions where the marker
has been detected before. This subregion is initially very
narrow and thus detecting the marker is very simple. Ex-
ploratory noise combined with the curiosity-driven learning
then continually drives both head and arm movements to
leave already explored regions of the observation space and
to uncover new ones. This is also what explains the high
variability of detection frequency during the goal babbling

experiment. In fact, Nao alternates between episodes of
almost perfect detection and episodes of very low detection
frequency throughout the whole experiment, owing to the
heterogeneity of the observation space in terms of learning
difficulty. Episodes of low detection frequency were found to
occur whenever Nao focuses on certain challenging regions
of the observation space such as hand positions far out to
the left that are easily obscured by its shoulder as well as
hand positions close to its body. It is important to note that
while the marker is often missed in these cases due to partial
concealment, this does not necessarily mean that the gaze
learner makes altogether wrong inferences. However this is
not captured in the present setup as the visual sensors can
only detect the marker when it is fully visible. This is one
of the drawbacks of the simple visual sensors employed
in the experiment. It is also the reason why the detection
frequency does not increase beyond the initial incline for
the goal babbling experiment and stays flat at around 60%.
Since observations where the marker is not fully visible lack
sensory feedback entirely and thus are simply ignored, the
learner does not register the extent to which it is failing
in challenging subregions of the observation space, thus
staying focused on those regions overly long. This behavior
continues to occur even towards the end of the experiment.

B. Distribution of Observations

Fig. 4 shows the distribution of observations for the goal
babbling, hybrid and motor babbling approach over the
course of the experiment in one prototypical replication. Both
the hybrid and motor babbling approach are characterized by
a distribution of samples that has been shown to be typical
for motor babbling [8]. Samples largely concentrate on the
center of the reachable space and thin out at its edges because
of the way random motor configurations non-uniformly map
to the sensory space. As opposed to this, goal babbling more
strongly explores the limits of the reachable space but also
explores central positions. Note again that the goal babbling
approach does not only differ in the distribution of samples
but also in their absolute number. The results suggest that
goal babbling more efficiently explores the sensory space,
most notably positions at the limits of the reachable space.

C. Learning Curve

Fig. 5 shows the learning curves for the goal babbling,
motor babbling and hybrid approach. The results suggest
that an inverse model for the arm kinematics can be learned
following the goal babbling and hybrid approach with a
mean error converging to 0.8(±0.05)cm on average for
goal babbling and 1.0(±0.06)cm on average for the hybrid
condition. Performance was assessed for the first time at
t = 100 and regularly from then onwards on 200 randomly
chosen representative sensory goals (see section Methods).
Pure motor babbling is inferior for obvious reasons, as only
very few valid observations can be accumulated over the
experiment. Despite the fact that also the hybrid and goal
babbling approach differ considerably in the amount of valid
observations, their performance is similar at later stages



Fig. 5. Learning curves for the goal babbling, motor babbling and hy-
brid approach. The upper plot shows the learning error averaged over
5 replications over time on 200 randomly chosen representative sensory
goals. Shaded areas indicate the error level corresponding to one standard
deviation. The lower plot indicates the number of attempts where the marker
was not in the camera image.

of the experiment. However, a slightly faster decrease in
performance error for the goal babbling approach can be
observed at earlier stages of the experiment. Performance
could not be assessed for some goals at each evaluation
because of the head inverse model’s failure to suggest an
appropriate head movement. The number of these masked
goals is shown in the lower plot of Fig. 5 and suggests
that only a small portion of goals is visually missed at each
evaluation time for all three settings.

IV. DISCUSSION

In this paper, we showed that two recent concepts inspired
by findings of developmental psychology, goal babbling [7],
[18], [8] and maximization of learning progress [9], [10],
[8], support efficient learning of inverse kinematics in a
humanoid robot that uses visual sensory feedback from its
on-board camera. We argued that using visual feedback
poses an additional challenge for learning because it requires
coordinated control of an additional set of motors, namely the
head joints. We therefore proposed to introduce an additional
inverse kinematic model, mapping arm configuration and im-
age space to head configuration and showed that learning of
both models concurrently from the start via an incremental,
goal-directed exploration is indeed possible. Furthermore,
it is important to highlight the strong interdependence of
both models and their respective exploration schemes. The
results show that learning of the head inverse model benefits
from goal-directed arm movements. This suggests that the
benefits of using curiosity-driven goal babbling can extend
from one level of the model architecture to another. We
therefore venture that curiosity-driven learning schemes are
a key element for multimodality and scalability in robot
systems of increasing complexity.

To test this hypothesis in future work, it would be inter-
esting to compare the three conditions investigated in this
paper with other settings. One possible setting would be

a hybrid condition in which arm configurations are chosen
randomly but restricted to the visual workspace of the head.
This would make the hybrid and goal babbling condition
more comparable. However, we did not follow this line of
investigation for two reasons. Firstly, the exact shape of
the constrained motor space is quite complex for reasons
mentioned earlier (i.e. Nao concealing its hand with its
own body) and modeling it a priori is thus challenging and
questionable in regard to biological plausibility. Secondly,
we were interested to see if Nao was able to uncover the
limits of its workspace, both for reaching and gaze control,
autonomously. In fact, it is one of the known virtues of
curiosity-driven learning to be able to effectively uncover the
limits of reachability [10]. Another relevant setting would be
a goal babbling approach with random instead of curiosity-
driven choice of goals so as to better disentangle the effects
of goal babbling and curiosity-driven learning.

Furthermore, several aspects of the proposed experiments
are still to be refined in future work. Firstly, we trained the
internal models entirely on positive feedback, considering
only trials where the marker was visible and discarding the
rest. This, however, led Nao to become over-interested in
challenging subregions of the observation space. Given a
learning mechanism that includes also the binary information
on the visibility of the marker, the detection frequency might
increase for the goal babbling setup. The second major aspect
concerns the way we modeled the sensory space presented
to the robot. We introduced a marker tag as a proxy to the
robot end-effector and used computer vision techniques to
determine its position. Furthermore, the sensory space from
which to sample goals was handcrafted. This suggests that
the robot holds a preconceived notion of its hand position
and of the task space in which to function. Consequently,
there is no need for self-detection which greatly simplifies the
experiments but is less biologically plausible and, arguably,
less scalable. However, the question of how an agent can
learn to perform self-detection and to abstract the task space
from a richer sensory context is an open and challenging
question. A recent publication [21] has addressed this issue in
a simple simulated experiment where the agent had to learn
to abstract goals from a richer sensory context while simulta-
neously performing goal-directed exploration. We think that
this is an interesting line of investigation because it highlights
the important question of how goals can appear in artificial
agents without the designer specifying them beforehand.
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