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Abstract— Evidence in developmental studies showed that
infants, around the age of three months, are already able to
represent and to reason about hidden objects [1].

We investigate the development of the sense of object per-
manence in robots. In the preliminary experiment presented
here, a humanoid robot has to learn how the movements of its
arms affect the visual detection of an object in the scene. The
robot is holding a shield in its left hand, which can eventually
hide the object from the visual input. As learning mechanism,
we adopted a goal-directed exploration behaviour inspired on
human development: the Intelligent Adaptive Curiosity (IAC)
proposed by Oudeyer, Kaplan and Hafner [2]. We present
an implementation of IAC on the humanoid robot Aldebaran
Nao and we compare its performance with that of a random
exploration strategy.

I. INTRODUCTION

Toddlers’ capability to represent occluded objects is lim-
ited, compared to that of adults, suggesting that it must
develop through infancy [1]. In this study, we investigate the
development of the sense of object permanence in robots
through exploratory behaviours. The role of exploration,
play and curiosity is generally recognized by developmental
psychologists and by biologists as of primary importance in
the development of young children and other mammals [3].

Developmental theories usually identify a sequence of
stages in infant development: in each step, only after certain
cognitive and morphological structures are ready, the child
can acquire a new skill. For example, children first learn
how to crawl before they learn how to sit and, then, to
walk [2]. Rehearsal of motor control through exploration
behaviours has been observed already during pre-natal stages
of development in foetuses [4] and continue after birth.
Parents scaffold the environment and help the toddler’s
interaction with the world. Nonetheless the child’s playing
seems to be driven by an intrinsic motivation system which
provides internal rewards during the experience [2].

Recently, interest on such behaviours has grown also in
the robotics community. The challenge is to build robots with
human-like capabilities of open-ended development through
exploration and interaction behaviours [2]. An example of
random exploration strategies, or motor babbling, in learning
inverse and forward models in artificial agents has been
presented by Demiris and Dearden [5]. However, random
babbling has been shown to be inefficient, especially in
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presence of high-dimensional motor spaces. This motivated
researchers in investigating intelligent exploration mecha-
nisms. For example, Saegusa et al. [6] proposed an active
motor babbling strategy for learning visuomotor coordination
in a humanoid robot, where a confidence function worked as
a memory of reliability for state prediction and control and
was used in biasing the exploration strategy. Rolf et al. [7]
presented an exploration behaviour based on goal-directed
babbling for learning the inverse model of a complex robotic
arm. Goal-directed exploration was shown to outperform
random exploration strategies. Oudeyer et al. presented an
implementation of an intrinsically motivated learning system,
named Intelligent Adaptive Curiosity [2], where an internal
reward reached by the act of playing was simulated and
evaluated by the system in robot dogs (Sony AIBO).

Fig. 1. Experimental setup in a simulator. The robot is holding a shield
in its left hand and is facing an object. In the left image, the configuration
of the robot’s arm does not hide the orange ball situated in front of the
robot (the visual input from the robot’s top camera is visible in the upper
left corner of the image). In the right image, the configuration of the arm
results in a full occlusion of the object, as visible from the robot’s top
camera.

In this study, we investigate the role of exploratory be-
haviours in the development of the sense of object perma-
nence in robots. Evidence in developmental studies showed
that infants aged 3.5 months and older are already able to
represent and to reason about hidden objects [1]. As a first
step towards the development of such a skill, we created a
simulated experimental setup where the task of the robot is
to explore how the movements of its left arm affect the visual
detection of an object in the scene. We adapted the efficient
exploration behaviour provided by the Intelligent Adaptive
Curiosity algorithm (described in the next section) proposed
by Oudeyer, Kaplan and Hafner [2].

II. INTELLIGENT ADAPTIVE CURIOSITY (IAC)

An artificial agent can generate a rich set of sensorimotor
information through self-exploration, which can be repre-



sented as a vector of sensory values S(t) and a vector of
motor values M(t), gathered at time t. IAC collects sensori-
motor data into a sensorimotor space that is partitioned into
regions. The partitioning is performed in a way that similar
sensorimotor contexts belong to the same region. Each region
Ri is characterized by its exclusive set of sensorimotor
contexts SM(t)1 and, in addition, by a learning machine, or
expert Ei, which is trained with the sensorimotor contexts
of its region. An expert is, in effect, an inference tool. It
can be queried to infer a motor command M(t) for reaching
a desired sensory state S(t + 1) or to predict the sensory
outcome S′(t+1) of a desired action M(t). Prediction errors
can be computed as the distance between the predicted and
the observed sensory outcomes.

A characteristic of the IAC framework is that each region
in the sensorimotor space stores a list of experienced pre-
diction errors, which is then used to evaluate the learning
progress within the region. The learning progress is com-
puted as the smoothed derivative of the error curve of Ei

considering only the most recent samples. For exploration,
IAC executes the action that has the highest expected learn-
ing progress.

III. THE EXPERIMENT

We created a simulated experimental setup where the task
of the robot is to explore how the movements of its left
arm affect the visual detection of an object in the scene2.
The robot is holding a shield in its left hand, which can
eventually hide the object from the visual input. The head
posture is fixed to a configuration that already allows for the
sight of the object (only one object is present in the scene),
if no arm movements cross the field of view. A sensorimotor
context consists of the following data:
• S(t): ball detected, b = 0, 1 4 joint angles αi(t);
• M(t): ∆αi;
• S(t+1): ball detected, b = 0, 1 4 joint angles αi(t+1)

The range of the angles for the joints of the left arm was
not restricted or normalized. The robot could move it’s arm
freely. The machine learning algorithm used for training the
experts is based on a k-nearest neighbour algorithm (k = 15).
A window of 40 samples was used for computing the first
derivative of the prediction errors, which determined the
learning progress of a region. For this reason, the initial
40 actions generated by the algorithm are chosen randomly.
Afterwards, the algorithm executes the intelligent exploration
behaviour by choosing the action for which the system
expects the maximal learning progress. However, in 30% of
the cases, actions were chosen randomly. The robot posture
is set back to a starting position after each action is executed.
All the relevant sensorimotor information are gathered at
the end of the execution of each action. As expected, we

1SM(t) denotes the sensorimotor context of the robot at time t, which
includes both the sensory and the motor values gathered at time t.
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observed the prediction error to decrease over time, as shown
in Figure 2. In addition, we observed the prediction error of
IAC to decrease faster than the prediction error of random
motor babbling.

Fig. 2. The prediction error for one run for IAC compared to the prediction
error for random babbling. The prediction error is calculated by computing
the mean error of every region for every iteration and by averaging it over
all the regions. The error is calculated using normalized euclidian distance.

IV. CONCLUSIONS

We showed how a humanoid robot can learn how the
movements of its arms affect the visual detection of an
object in the scene. In particular, we implemented an intel-
ligent exploration behaviour based on intrinsic motivation,
the Intelligent Adaptive Curiosity algorithm proposed by
Oudeyer et al. [2], as a learning mechanism for the robot
Nao, together with a comparison between IAC and random
exploration strategies. This can be a preliminary study in
the investigation of the development of the sense of object
permanence in robots.
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