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Abstract—Coordinating vision with movements of the body
is a fundamental prerequisite for the development of complex
motor and cognitive skills. From a neuroscience perspective,
visuo-motor coordination relies on neural processes that map
spatial vision onto patterns of muscular activation.

In this paper, we investigate the formation and the coupling
of sensory and motor maps in the humanoid robot Aldebaran
Nao. We propose a biologically inspired model for coding internal
representations of sensorimotor experience that can be fed with
data coming from different motor and sensory modalities, such
as visual, auditory and tactile. The model is inspired by the
self-organising properties of areas in the human brain, whose
topologies are structured by the information produced through
the interaction of the individual with the external world. In
particular, Dynamic Self-Organising Maps (DSOMs) proposed
by Rougier et al. [1] have been adopted together with a Hebbian
paradigm for on-line and continuous learning on both static and
dynamic data distributions, with the aim of simulating cortical
plasticity.

Results show how the humanoid robot improves the quality
of its visuo-motor coordination over time, starting from an
initial configuration where no knowledge about how to visually
follow its arm movements is present. Moreover, plasticity of
the proposed model is tested. At a certain point during the
developmental timeline, a damage in the system is simulated by
adding a perturbation to the motor command used for training
the model. Consequently, the performance of the visuo-motor
coordination is affected by an initial degradation, followed by
a new improvement as the proposed model adapts to the new
sensorimotor mapping.

I. INTRODUCTION

Coordinating vision with movements of the body is a fun-

damental prerequisite for the development of complex motor

and cognitive skills. In early developmental stages, infants

progressively bootstrap their attention capabilities towards a

growing number of salient events in their environment, such

as moving objects, their own body, external objects and

other individuals [2]. Developmental studies showed an early

coupling between visual and motor systems in infants [3]

and suggested a correlation between hand-eye coordination,

learning capabilities and social skills [4].

Related work can be found in the developmental robotics

literature. Metta [5] implemented an adaptive control system

inspired by biological development of visuo-motor coordina-

tion for the acquisition of orienting and reaching behaviours

on a humanoid robot. Following a developmental paradigm,

the system starts with moving the eyes only. At this point,

control is a mixture of random and goal-directed movements.

The development proceeds with the acquisition of closed loop

gains, reflex-like modules controlling the arm sub-system,

acquisition of an eye-head coordination and of a head-arm

coordination map.

Saegusa et al. [6] studied self-body perception in a hu-

manoid robot based on the coherence of visual and proprio-

ceptive sensory feedback. A robot has been programmed to

generate random arm movements and to store image cues

in a visuomotor base together with joint angles information.

Correlations between visual and physical movements have

been used to predict the location of the robot’s body in the

visual input, and recognise it.

In recent publications [7] [8], we showed how a humanoid

robot acquires hand-eye coordination and reaching skills by

exploring its movement capabilities through body babbling

and by using a biologically inspired model consisting of Self-

Organising Maps (SOMs [9]). Such a behaviour led to the

development of pointing gestures. The model architecture is

inspired by the Epigenetic Robotics Architecture [10], where

a structured association of multiple SOMs has been adopted

for mapping different sensorimotor modalities in a humanoid

robot. We also showed how a robot can deal with tool-

use when equipped with self-exploration behaviours and with

the capability to execute internal simulations of sensorimotor

cycles [11] [12].

From a neuroscience perspective, visuo-motor coordination

relies on neural processes that map spatial vision onto patterns

of muscular contraction. Such a mapping would be acquired

over time through the physical interaction of the infant with

its surrounding, with a gradual formation of internal rep-

resentations already during the early stages of development

[14]. Moreover, it is through interacting that topographic maps

would form in the sensory and motor areas of the brain.

Topographic maps can be seen as projections of sensory



Fig. 1. Babbling sequence on the humanoid robot Aldebaran Nao. The
picture has been taken from [13]. Real robot pictures are shown for the sake
of clarification, since a simulated robot (Webots simulator) has been used for
the experiment presented here. In the exploration behaviour presented in [13]
and [7], head movements have been hard-coded to follow the movements of
the hand. In the experiment presented here, instead, head movements result
from the sensorimotor mapping learned by the proposed model.

receptors or of effector systems into structured areas of the

brain. These maps self-organise throughout the brain devel-

opment in a way that adjacent regions process spatially close

sensory parts of the body. Several studies show the existence of

such maps in the visual, auditory, olfactory and somatosensory

systems, as well as in parts of the motor brain areas [15].

In this paper, we investigate the formation and the coupling

of sensory and motor maps in the humanoid robot Aldebaran

Nao. We propose a biologically inspired model for coding

internal representations of sensorimotor experience that can

be fed with data coming from different motor and sensory

modalities, such as visual, auditory and tactile. The model is

inspired by the self-organising properties of areas in the human

brain, whose topology is structured by the sensory information

produced by the interaction of the individual with the external

world.

Already in 1990, Martinetz et al. [16] proposed an ex-

tension of Kohonen’s self-organizing mapping for learning

visuo-motor coordination in a simulated robot arm with fixed

cameras. The authors used a network with three-dimensional

topology matched to the work space of the robot arm. The

system extracted the position of an object to reach from

the visual input and fed the 3D-lattice of neurons with its

coordinates. An output vector representing the arm posture

was associated to each neuron of the map. A training ses-

sion has been run for mapping sequences of input-output

relations, to learn the required transformations for visuo-

motor coordination of a robot arm [16]. However, as Arras

and colleagues [17] pointed out, the approach proposed by

Martinetz and collegues [16] was based on a time-dependent

learning rate. While the model worked well for the initial

learning, it then kept the learning rate at a constant level, which

was insufficient for allowing the network to adapt to changes

in the robot’s environment. Thus, Arras et al. extended the

algorithm by coupling the learning rate to the arm positioning

error estimated from the continuous camera feedback, thus

allowing for adaptation to drastic changes in the robots work

environment [17]. However, both the approaches addressed

learning of visuo-motor coordination of a robot arm with fixed

cameras, with using a model consisting of a three-dimensional

map whose nodes contain both visual input and motor output

information [16] [17].

In this paper, Dynamic Self-Organising Maps (DSOMs)

proposed by Rougier et al. [1] have been adopted as topology

preserving maps. Similarly to the algorithm presented in [17],

DSOMs allow for on-line and continuous learning on both

static and dynamic data distributions, thus simulating cortical

plasticity as a dynamic coupling between the environment and

the model. In the experiment presented here, we address visuo-

motor coordination in a humanoid robot with moving arm and

camera, with using two DSOMs for coding the posture of the

arm and the posture of the neck of the robot. The two DSOMs

are associated through Hebbian learning modulated from the

visual input through the interaction of the robotic agent with

its surrounding, thus simulating the neural processes that map

visual inputs onto patterns of muscular contraction in the

human brain.

This paper is structured as follows. Section II introduces

the DSOM algorithm proposed by Rougier et al. [1]; section

III describes the main experiment on learning visuo-motor

coordination in the humanoid robot Aldebaran Nao using

DSOMs and a Hebbian learning paradigm; section IV presents

the results and the performances of the system; we conclude

the paper with a discussion in section V.

II. DYNAMIC SELF-ORGANISING MAPS

Classical Self-Organising Map algorithms implement de-

caying adaptation parameters for tracking data distribution.

Thus, self-organisation depends heavily on time-dependent

decreasing learning rate and neighbourhood function. Once the

adaptation strength has decayed, the network is unable to react

to subsequent changes in the signal distribution [18]. Such an

approach can not be used for simulating cortical plasticity, the

capability of the cortex of re-organise itself in face of lesions

and deficits [1] [19].

Models such as Growing Neural Gas (GNG) have been

proposed for online and lifelong learning, that can also adapt

to dynamic distributions [20]. GNGs have no parameters that

change over time and they allow for continuous learning,

adding units and connections, until a performance criterion

has been met [20]. Similarly, Evolving Self-Organising Maps

(ESOMs) [21] implement incremental networks that create

nodes dynamically based on the distance of the winner node

to the input data.

Rougier et al. [1] proposed the Dynamic Self-Organising

Map (DSOM), a modified SOM algorithm where learning

rule and neighbourhood function do not depend on time.

The authors demonstrated how the model dynamically adapts

to changing environments, or data distributions, as well as

stabilises over stationary distributions. They also reported

DSOM to perform better than classical SOM and Neural Gas

in a simulated scenario [1].

DSOM is a structured neural map composed of neurons with

fixed positions pi in Rq in the lattice, where q is the dimension

of the lattice (in our experiment q = 2). Each neuron i has a



weight wi that is updated according to the input data pattern v

through a learning function and a neighbourhood function. For

each input pattern v, a winner s is determined as the closest

neuron in the DSOM to v using an Euclidean distance. All

codes wi are thus shifted towards v according to:

∆wi = ǫ‖v − wi‖Ωhη(i, s, v)(v − wi) (1)

where ǫ is a constant learning rate, Ω is the set of codes in

the codebook (the weights of the neurons) and hη(i, s, v) is a

neighbourhood function of the form:

hη(i, s, v) = e
−

1

η2

‖pi−ps‖2

‖v−wi‖
2

Ω (2)

where η is the elasticity or plasticity parameter, pi is the

position of the neuron i in the lattice, ps is the position of the

winner neuron in the lattice. If v = wi, then hη(i, s, v) = 0.

The rationale behind such equations is that if a neuron is close

enough to the data, there is no need for other neurons to learn

anything, since the winner can represent the data. If there is

no neuron close enough to the data, any neuron learns the data

according to its own distance to the data [1].

However, the DSOM algorithm is not parameter free: the

elasticity parameter modulates the strength of the coupling

between neurons. If elasticity is too high, neurons cannot span

the whole space and the DSOM algorithm does not converge.

If elasticity is too low, coupling between neurons is weak and

may prevent self-organisation to occur [1]. The effect of the

elasticity, as reported by the authors, not only depends on the

size of the network and the size of the support but also on the

initial conditions. To reduce the dependency on the elasticity,

the initial configuration of the network should cover as much

as possible the entire support [1].

Nonetheless, DSOMs allow for dynamic neighbourhood and

lead to a qualitatively different self-organisation that can be

controlled using the elasticity parameter. DSOMs map the

structure or support of the distribution rather than its density,

as many other Vector Quantisation algorithms do.

III. LEARNING VISUO-MOTOR COORDINATION

We implemented a biologically inspired model for learning

visuo-motor coordination in the Nao robot. The model consists

of two bi-dimensional DSOMs encoding the arm postures and

the head postures of the robot, respectively. Arm postures

consist of 4-dimensional vectors containing the angle positions

of the following joints of the robot: shoulder pitch, shoulder

roll, elbow yaw, elbow roll. Head postures consist of 2-

dimensional vectors containing the angle positions of the neck

joints of the robot: head yaw, head pitch.

The two DSOMs are associated through Hebbian links.

In particular, each node of the first DSOM is connected to

each node of the second DSOM, where the connection is

characterised by a weight. The weight is updated according

to a positive Hebbian rule that simulates synaptic plasticity

of the brain: the connection between a pre-synaptic neuron (a

node in the first DSOM) and a post-synaptic neuron (a node

in the second DSOM) increases if the two neurons activate

simultaneously. Thus, the model consists of two DSOMs and

a Hebbian table containing the weights of the links connecting

the two DSOMs. The table has a size equal to the number

of neurons of the first DSOM multiplied with the number of

neurons of the second DSOM.

Learning consists of two parallel processes. The robot

executes random body babbling of its arm, that is, it executes

random motor commands of its arm sampled from uniform

random distributions within its arm joints ranges. The first

learning process consists in training the two DSOMs as

follows. Instant by instant, the current positions of the joints

of the arm have been used as input data vector for the learning

rule of the arm DSOM (equations (1) and (2)). At the same

time, a motor command is sent to the neck joints as follows:

- search for the winner neuron of the arm DSOM (the

closest node in the arm DSOM to the input vector

represented by the current arm joints configuration);

- select the winner neuron in the Head DSOM as the one

that has the highest connection weight to the winner

neuron in the arm DSOM. If there is more than one

winner neuron (that is, multiple connections with the

same weight), then choose a random one from the group

of winners;

- send a motor command to the joints of the neck equal to

the weight of the winning neuron.

The Head DSOM is also updated using equations 1 and 2,

with using the current angle positions of the neck joints as

input data vector.

In parallel to the first learning process, a second learn-

ing process based on a Hebbian learning paradigm is run.

The Hebbian learning paradigm describes an associative con-

nection between activities of two connected neurons [7].

Here, when the end-effector of the robot is visible from

the visual input, the connection between the winner nodes

of the two DSOMs is strengthened. The hand of the robot

has been tagged with a fiducial marker and its position in

image coordinates has been estimated using the ARToolkit

(www.hitl.washington.edu/artoolkit). The bottom camera of

the Aldebaran Nao robot has been used for grabbing visual

input.

Thus, visuo-motor coordination can be considered as suc-

cessful if the marker tagging the end-effector of the robot is

visible from the visual input. In this case, the Hebbian learning

process updates the Hebbian table connecting the two DSOMs

as follows. If a marker is visible:

- select the pre-synaptic neuron (winner neuron) as the

closest neuron i in the arm DSOM to the current arm

joint configuration x;

- select the post-synaptic neuron (winner neuron) as the

closest neuron j in the Head DSOM to the current neck

joint configuration y;

- strengthen the connection wij between the pre- and

post-synaptic neurons according to the modified positive

Hebbian rule:

∆wij = ηAi(x)Aj(y)fc (3)
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Fig. 2. Illustration of the proposed model. On the left side, the 2-dimensional lattices of the two DSOMs (arm and head) are shown. The DSOMs can be
also represented in the input space, where neurons are positioned according to their weights (right side). Lines connecting the two DSOMs represent Hebbian
links, with weights w 6= 0. Thicker lines correspond to stronger Hebbian links.

where Ai(x) is the activation function of the neuron i over

the Euclidean distance between the neural weights and the data

pattern x, η is a scaling factor for slowing down the growth of

the weights (in this experiments it is initialised with 0.01), and

fc is a multiplying factor related to the distance between the

perceived position of the hand (marker) in image coordinates

to the center of the image grabbed from the robot camera

(image size: 320× 240). fc ranges from 1 (hand at the center

of the image) to 0 (hand at the corner of the image) and it is

used to make the system choose head positions that result in

the hand being close to the center of the image.

As in Kajic et al. [7], the activation function of a neuron,

A(x) is computed over the Euclidean distance between the

neural weights and the input vector, denoted with x:

A(x) =
1

1 + tanh(x)
(4)

All weights between two SOMs are set initially to zero

allowing for an activity-dependent role of structural growth in

neural networks [7].

Figure 2 shows an illustration of the proposed model, which

consists of two DSOMs connected by Hebbian links.

IV. RESULTS

The experiment was run on the Cyberbotics Webots robot

simulator. As described in the previous section, two DSOMs,

namely arm DSOM and Head DSOM, have been trained with

data generated through motor babbling. Each DSOM consisted

of 30 × 30 neurons, or nodes. Associated with each node

of the arm DSOM is a weight vector of four dimensions,

representing the positions of the following joints: shoulder

pitch, shoulder roll, elbow yaw and elbow roll. Similarly, each

node of the Head DSOM is associated with a weight vector

of two dimensions, representing the following joint positions:

head yaw and head pitch. Weights of the neurons of both the

two DSOMs have been randomly initialised within the ranges

of the corresponding joints, to reduce the effect of elasticity

dependency. As pointed out by Rougier et al. [1], the initial

configuration of the DSOM network should cover the entire

support as much as possible to reduce elasticity dependency.

The experiment was run for around 3 hours and 20 minutes

(197.58 minutes). It consisted in the robot generating random

arm movements and moving its head accordingly to the current

visuo-motor coordination skills. Learning was performed on-

line, in parallel to the execution of the movements. It consisted

in updating the DSOMs based model with training data

represented by the current positions of the joints of the arm

and those of the head. Instant by instant, the current arm

joint configuration is used as input pattern for the arm DSOM

update rule, as described by equation (1). Similarly, the current

head joint configuration is used as input pattern for the Head

DSOM update rule. Frequency of the updates matched the

frame rate of the visual input, namely 15 frames per second.

During 197.58 minutes, the DSOMs have been updated with

input training patterns 177.823 times. In parallel to the DSOM

updates, the Hebbian table connecting the two DSOMs has

been updated with the positive Hebbian rule described by

equation 3, only when the end-effector of the robot was visible

in the visual input. During the 197.58 minutes, the hand of

the robot was detected 91.658 times and, correspondingly, the

Hebbian table was updated.

The quality of visuo-motor coordination has been measured

as the number of times the end-effector of the robot has been

detected from the visual input during a time window of 5

minutes. This measurement was repeated every 5 minutes for

the entire duration of the learning session (197.58 minutes).

A linear regression computed on the collected measurements

showed a positive trend (slope 12.147, intercept 2175.176),

demonstrating that the quality of visuo-motor coordination

improves over time. In other words, the mapping between

arm and head joints is learned over time, resulting in an

improvement of the precision of the head movements in



following the sight of the end-effector.

In addition to this analysis, we wanted to test the plasticity

of the proposed model. After the first learning session, a

damage in the system is simulated by adding a perturbation to

the motor command used for training the model. In particular,

arm movements have been randomly generated as in the first

learning session but the vector representing the current arm

joint configuration has been affected by a perturbation. The

perturbation consisted in translating the vector of the arm

motor command. The perturbation has been initialised as

random, but then it has been kept constant. In this experiment,

the following perturbation has been added to the arm joints:

0.1265 radians to the shoulder pitch joint, 1.1411 radians to

the shoulder roll joint, 1.2295 radians to the elbow yaw joint

and -0.2242 radians to the elbow roll joint.

A new learning process started after the first learning ses-

sion. In particular, 96.049 new input patterns (around 106.72

minutes) containing the perturbation have been used for the

on-line update of the models. The hand-detection rate has been

measured over 5 minutes, as during the first learning session.

A linear regression computed on the collected measurements

during the first 35 minutes of learning affected by perturbation

showed a negative trend (slope: -80.286, intercept: 2685.857).

In other words, performance of the visuo-motor coordination

degraded, probably due to the fact that the arm DSOM and

the Hebbian table needed to re-adapt to the new input data.

However, a new improvement in the visuo-motor coordina-

tion has been reported during the following 71.72 minutes,

as confirmed by the positive trend of the linear regression

(slope: 1.2154, intercept: 2255.264). This demonstrates that

the proposed model is able to deal with the unexpected change

in the input signal.

Figures 3 shows the trends of the quality of visuo-motor

coordination. The three blue segments show the linear re-

gressions of: the initial learning phase (without perturbation),

the first degradation phase after the perturbation and the final

phase characterised by a new improvement. These results con-

firm that the proposed model implements brain-like plasticity.

Figure 4 and 5 also show the trends of the distortion

measurement of the arm DSOM and of the Head DSOM.

Distortion is a popular criterion for assessing the quality of

a Kohonen map [9]. It is computed as follows. For each input

pattern:

- Update the DSOM using the input pattern;

- Compute the distance between the input pattern and the

winner neuron (the closest DSOM neuron to the input)

Distortion is computed as the sum of the calculated dis-

tances, divided by the number of input patterns. Since we are

dealing with on-line learning mechanisms, not the entire set of

processed input data is used for computing the distortion error.

Rather, at each instant, only the previous 1.800 observations

(corresponding to two minutes of exploration) have been used

for computing the error. Figure 4 shows a decreasing distortion

error for the arm DSOM during the first 5 minutes of learning,

followed by a quasi-stationary error until the moment when

the perturbation is added to the arm command (around instant

50 100 150 200 250 300

Time (Minutes)

Fig. 3. The quality of visuo-motor coordination was measured as the number
of times the end-effector of the robot was detected from the visual input
during a time window of 5 minutes. This measurement (red line in the
figure) was repeated every 5 minutes for the entire duration of the learning
session. Blue lines show linear regressions. First learning phase: slope 12.147,
intercept 2175.176; second learning phase (after perturbation marked by the
first vertical green line): slope -80.286, intercept 2685.857; third learning
phase (re-adaptation to the new data distribution): slope 1.2154, intercept
2255.264.
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Fig. 4. Distortion error of the arm DSOM. The green vertical line marks the
time instant (39.51, or 197.58 minutes) from when a perturbation is added
to the arm commands. Errors are computed over a moving window of 1.800
input samples (2 minutes, considering the update frequency of 15 frames per
second).

40 in the x-axis, or 197.58 minutes). Thus, an increase of the

distortion error is reported, most probably due to the change

in the distribution where the data is sampled from. Once the

DSOM adapts to the new distribution, the distortion error starts

to decrease and to stabilise.

The Head DSOM is not affected by the perturbation, in the

current experiment. In fact, as shown in Figure 5, no significant

jumps in the distortion error signal are reported.

V. CONCLUSION

We investigated the formation and the coupling of sensory

and motor maps in the humanoid robot Aldebaran Nao. In

particular, we proposed a biologically inspired model for on-

line and continuous learning of visuo-motor coordination. The

model is able to represent sensorimotor experience and, thus,

can be extended to different motor and sensory modalities,

such as visual, auditory and tactile.
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Fig. 5. Distortion error of the Head DSOM. Errors are computed over a
moving window of 1.800 input samples (2 minutes, considering the update
frequency of 15 frames per second). After the first 10 minutes of learning,
the distortion error stays stable between 0.01 and 0.02, since the underlying
data distribution is not changing.

The model consists of two Dynamic Self-Organising Maps

associated through Hebbian links, which allow on-line learning

of sensorimotor mappings, a fundamental prerequisite for the

development of motor and cognitive skills. Moreover, results

demonstrate that the model possess an adequate level of

plasticity, since it is able to adapt to dynamic data distributions.

In particular, the aim of the experiment presented here is

to make the robot able to learn how to follow the movements

of its hand, while generating random motor commands to its

arm joints. During the random movement generation, namely

motor babbling, arm and head postures are used for updating

the corresponding DSOMs on-line, while they are associated

through Hebbian learning whenever the end effector of the

robot is visible in the visual input. Head movements are

generated as outputs of the proposed model. The quality of the

head movements depends on how well the DSOMs encode the

data distribution where the arm and neck postures are sampled

from, and on how well they are associated through Hebbian

learning.

Using the proposed model, the humanoid robot improves

the quality of its visuo-motor coordination over time, starting

from a random configuration where no knowledge about how

to visually follow its arm movements is present. Moreover,

plasticity of the proposed model is tested. At a certain point

during the developmental timeline, a damage in the system is

simulated by adding a perturbation to the motor command used

for training the model, resulting in translating the original data

distribution. Consequently, the performance of the visuo-motor

coordination is affected by an initial degradation, followed by

a new improvement as the Arm DSOM adapts to the new data

distribution and the Hebbian connections between the Arm

DSOM and the Head DSOM adapt to the new mapping.
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