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ABSTRACT
Hand-eye coordination is an important motor skill acquired
in infancy which precedes pointing behavior. Pointing facil-
itates social interactions by directing attention of engaged
participants. It is thus essential for the natural flow of
human-robot interaction. Here, we attempt to explain how
pointing emerges from sensorimotor learning of hand-eye co-
ordination in a humanoid robot. During a body babbling
phase with a random walk strategy, a robot learned map-
pings of joints for different arm postures. Arm joint config-
urations were used to train biologically inspired models con-
sisting of SOMs. We show that such a model implemented
on a robotic platform accounts for pointing behavior while
humans present objects out of reach of the robot’s hand.
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1. INTRODUCTION
Detecting and manipulating the focus of attention of an

interacting person is fundamental in human-robot interac-
tion. In humans, the development of such social skills is pre-
ceded by the acquisition of early motor competences, such
as hand-eye coordination [4].
In [2], learning hand-eye coordination and reaching ca-

pabilities through self-exploration led to the development
of pointing behaviors in a humanoid robot. Learning con-
sisted in the robot exploring its arm movements while col-
lecting sensorimotor data (hand and arm joint positions),
thus building up an internal model of its own body. A simple
predictive algorithm provided the robot with a mechanism
for producing motor commands to reach desired hand posi-
tions. Pointing behaviors emerged when target points were
presented outside the reach of the robot, thus strengthening
the hypothesis that pointing may arise from grasping.
Here, a similar experiment is presented, where a biologi-

cally inspired model consisting of self-organizing maps (SOMs)
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Figure 1: Scheme of the model architecture for
learning hand-eye coordination with SOMs and con-
necting weights

has been used for modeling the hand-arm joints mapping.
SOMs reproduce the phenomenon of self-organization of the
developing brain in response to sensory input [1]. As in [2],
the robot showed pointing behaviors when required to ap-
proach points outside its reach. The model architecture is
inspired by the Epigenetic Robotics Architecture presented
in [5], where a structured association of multiple SOMs has
been adopted for mapping different sensorimotor modalities
in a humanoid robot.

2. BIOLOGICALLY INSPIRED MODEL
We implemented a biologically inspired model consisting

of two connected neural networks simulating two distinct
sensorimotor brain areas. SOMs, or Kohonen networks [3],
are a class of topological neural networks used to learn low-
dimensional representations of data by neurons approximat-
ing multiple data points. We used 2D SOMs to represent
left arm postures of a humanoid robot. Neurons in one map
were used to represent the hand trajectory and neurons in
the other the joint elbow and shoulder trajectory.1 The
schematic architecture of the model is shown in Figure 1.

In the random babbling experiment 74,143 input vectors
were collected and used for training of SOMs.2 Training

1Horizontal, vertical and depth dimensions were used to charac-
terize the position of a hand. Elbow jaw, elbow roll, shoulder
pitch and shoulder roll were used to characterize the rest of the
arm trajectory.
2Random body babbling lasted approximately 40 minutes. Tra-
jectories of the robot’s left arm and the marker position on the
hand were captured by a camera positioned in its head at a vary-
ing speed between 9 and 30 frames per second.
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Figure 2: SOM with 225 neurons covering the left
hand trajectory samples (a) and movements of the
object and the robot’s left hand along the horizontal
axis (b)

comprised of 20,000 iterations and in each iteration a ran-
dom input vector was chosen – 3D hand coordinates for the
first SOM, and 4D joint coordinates for the second SOM.
Neurons with the smallest Euclidean distances to the input
vector in each SOM were pulled together using a Gaussian
neighborhood function centered around the winning neu-
ron (σ = 0.7) at a learning rate η = 0.9. After the first
half of iterations, parameters η and σ were annealed expo-
nentially. To contrast the precision of arm movements, we
trained two instances of a model, one consisting of two SOMs
with 25 neurons each (5x5 model) and the other instance
with SOMs with 225 neurons (15x15 model) mimicking the
increase in the number of neurons for the more advanced
stage in the skill development. The 15x15 network covering
the left hand trajectory obtained in the babbling experi-
ment is shown in Figure 2(a). The weights linking neurons
of the two SOMs were increased according to the Hebbian
learning rule: if a postsynaptic neuron is activated after the
presynaptic neuron, the connection between these two neu-
rons is strengthened. Both networks were presented with
vectors from the babbling knowledge base, and the connec-
tion weight between winning neurons in each network was
increased proportionally to their activations and the scaling
factor η = 0.01. We adapted minimalistic SOM implemen-
tation [6] for our purposes.

3. RESULTS
We ran the experiment with a 15x15 model configuration

by moving an object tagged with a marker in front of the
robot for around 2.5 minutes. Movements were random and
covered the space within and beyond the reach of the robot’s
hand. For positions out of its reach, the robot pointed to
the object as presented in the experimental setting in Figure
3. Every 100 ms we collected sensory data which were the
position of the object held by a human and captured by
the robot’s camera, and arm postures determined by both
SOMs for 5x5 and 15x15 model configurations. The position
along the horizontal axis of a robot is constrasted with the
position of a marker in Figure 2(b).
As a simple quantification measure of pointing we intro-

duced pointing precision error, which is defined as the sum
over all dimensions of Euclidean distances between the po-
sition of a marker and the hand position.
A paired-samples t-test was conducted to compare pre-

cision errors for the 5x5 network and the 15x15 network.
There was a significant improvement in the performances

Figure 3: Human-robot interaction

from the 5x5 network (Mean error = 99.93 mm) , Std.Dev. =
32.10 mm) to the 15x15 network (Mean error = 80.32 mm,
Std.Dev. = 33.41 mm) conditions; t(1400)=76.47, p < 0.05.

4. FUTURE WORK
The preliminary results have shown that SOMs are well

suited for sensorimotor coupling on a humanoid robotic plat-
form. In particular, they explain how hand-eye coordination
during random body babbling contributes to the develop-
ment of pointing skills. Future work includes further analy-
sis of the influence of the number of neurons and training pa-
rameters of the network on pointing precision. In addition,
one might be able to attribute the number of neurons in the
network to different degrees of pointing skill development
in infants and children. Using extended SOM models such
as growing neural gas, one could observe progressive devel-
opment of the skill. Understanding cognitive development
of this important social skill would improve human-robot
interaction by making it more adaptive and natural.
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