
  

1 

Abstract— The work introduced in this paper was performed 

as part of the FP7 INTRO (Marie-Curie ITN) project. We 

describe the activities undertaken towards the development of a 

field robotic assistant for a Search and Rescue application. We 

specifically target a rubble clearing task, where the robot will 

ferry small pieces of rubble between two waypoints assigned to 

it by the human. The aim is to complement a human worker 

with a robotic assistant for this task, while maintaining a 

comparable level of speed and efficiency in the task execution. 

Towards this end we develop/integrate software capabilities in 

mobile navigation, arm manipulation and high level tasks 

sequences learning. Early outdoor experiments carried out in a 

quarry are furthermore introduced. 

I. INTRODUCTION 

As (Urban) Search and Rescue ((U)SAR) is an arduous 
and dangerous task, in this work we aim to develop software 
capabilities for a field robotic assistant for SAR scenarios. 
Specifically we target the task of clearing rubble in the 
aftermath of an event such as an earthquake. A task such as 
this would ordinarily be carried out by a team of human 
USAR workers. The motivation of this work is to replace one 
of these humans with a semi-autonomous robotic assistant, 
while maintaining comparable performance in task execution. 
Such a robot would require autonomous capabilities in arm 
manipulation, navigation and behaviour learning. The INTRO 
project tackled several complementary research challenges (as 
part of PhD thesis works by 8 PhD students of the 
consortium), and have the outcomes integrated as part of 
relevant application scenarios – including the SAR scenario 
presented here. 

Figure 1 shows the robotic platform used in the 
development. Development and software integration work 
was done using the ROS (Robot Operating System) [2] 
robotic software framework. This was chosen for language 
interoperability and software reuse features. 

II. HRI IN URBAN SEARCH AND RESCUE 

 Urban Search And Rescue (USAR) robotics covers a 
wide range of mobile robotics activities: the baseline situation 
is a disruptive event, originating either from natural 
phenomenon (e.g. earthquake, floods…) or human activities 
(e.g. building site fire, chemical plant disaster, terrorism…). 
In such contexts, robot platforms can be sent to acquire 
information or to intervene with manipulation capabilities at 
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locations where human interventions would otherwise be 
risky or hazardous. For instance in the case of hazardous 
material dispersion, information about the type of substance is 
of paramount importance regarding the decision to send or not 
rescue teams. Besides, USAR robotics applications also deal 
with simultaneous on site human and robots interventions. In 
such setups, either the robotic platforms can be used 
independently from rescue teams for specific purposes (e.g. 
victim detection, hazards evolution monitoring…), or can be 
in a certain extent integrated to operating squads, providing 
contextual support and / or collaborating with human 
rescuers. 

 The former, e.g. loose joint operation, has already been 
demonstrated in real USAR events, noticeably during the 
World Trade Center disaster of 2001 (HRI related issues have 
been reported in [3]). Although studied in the HRI 
community, the latter has barely been demonstrated in real 
USAR setups: indeed the process of getting robotic platforms 
included and accepted within intervention teams’ tools is not 
straightforward, and requires both high maturity of 
technologies (readiness level) and having the robotic 
technologies accepted by users. To our knowledge, the only 
areas where robotic platforms are commonly accepted as 
integrated tools in USAR like type of activities are (i) bomb 
disposal, and (ii) aerial surveillance (with Unmanned Aerial 
Vehicles). 

 

Figure 1. Outdoor mobile manipulator platform 

 Mobile robots teleoperation has been used or considered in 
various areas for decades. A number of teleoperation 
interface designs exist in the literature, either explicitly 
considering USAR type of applications [4][7] or addressing 
teleoperation interface design in more general terms [5][6]. 
Remote robots monitoring and control is a convincing way to 
bring robotic platforms to the contact of human workers and 
eventually get robots accepted as efficient tools and / or co-
workers. Though teleoperation is also used in complement of 
the work presented in this paper, the focus here is rather on 
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proximate human robot interaction (as defined by Yanco in 
[8]).  

 Capabilities in the scope of search and rescue is still 
arguably un-mature, but obvious benefit can be expected 
with it. As part of the INTRO project, we are addressing a set 
of proximate collaboration capabilities, under the form of 
manipulation assistance. As a main scope, the collaboration 
consists in semi-autonomous object fetching from a rescuer’s 
hand, and disposing objects at some distance.  

 We provide in the following sections insights regarding 
approach followed, and initial results obtained. 

III. ROBOTIC PLATFORM 

 The mobile robot is a Husky A200 [1], with in-built 
odometry wheel encoders. We use an Xsens MTi IMU 
(Inertial Measurement Unit) for pose orientation correction. 
An EKF (Extended Kalman Filter) pose estimation node is 
used to fuse wheel odometry and IMU data, and this provides 
the pose estimation input into the SLAM/localization node. 
For the observation sensor we used the common Hokuyo 
URG-04 LX laser range finder [9], mounted on the front 
bumper (note that a Sick LMS 151 now replaces it for more 
effective outdoor applications).  

For manipulation tasks we deployed a 5 DOF robotic 
manipulator manufactured by Invenscience [10], mounted on 
the robot’s main plate. We used a fixed USB camera for 
marker extraction for manipulation tasks, also mounted on the 
front bumper. For onboard processing the robot contains a 
Mini-ITX PC in its internal compartment. 

IV. PROJECT CONCEPT AND TECHNICAL APPROACH 

Broadly there are 3 software components developed and 
integrated during this work: 

 High level behavior learning, in order to learn the overall 
rubble-clearing behavior. 

 Robotic arm manipulation, in order to be able to pick up, 
carry and deposit pieces of rubble. 

 Autonomous mobile navigation, in order to navigate 
between the pickup and dropoff waypoints. 

A.  High Level Sequence Learning 

The high level sequence learning software was developed 
by researchers at a partner institution [11][12][13], 
participating in this integration project. In order to learn a 
behavior it must first be defined as an ordered sequence of 
high-level actions. The idea is that this behavior is executed 
repeatedly once learned. We define the rubble clearing 
behavior with the following 3 actions: 

 “Explore” – we optionally map the environment with 
SLAM; the immediate area in which the rubble clearing 
task takes place. A static map may alternatively be used; 
in either case an area map is necessary for the behavior to 
continue. The user then assigns a waypoint to the robot 
which is interpreted as the “pickup” waypoint, and the 
action concludes when the robot navigates to the 
waypoint. 

 “Grasp” – upon arriving at the “pickup” waypoint, the 
robot takes the object (rubble) from the USAR Worker. 

 “Move” – similarly to the first action, the user assigns 
another waypoint to the robot. This waypoint is 
interpreted as the “dropoff” waypoint. The robot 
navigates to the “dropoff” waypoint and deposits the 
object at a target location. 

 

       Figure 2. High Level Learning Interface – subsequent 

knowledge representation is based on a semantic network 

Knowledge within this learning system is represented as a 
Semantic Network (SN) (see Figure 2. ), where the actions are 
pink nodes and concepts (knowledge) are blue nodes. 
Currently activated nodes are coloured green. 

During the learning phase, each action is first learned 
individually. The action node is created (e.g. Grasp) and then 
linked to related concept nodes in the network. For example, 
as we are grasping rubble, “Grasp” would be linked with 
“Rubble” and sub-types of rubble. In this manner all of the 
required actions are added to the network. Once this is done, 
we manually compose these actions into an ordered sequence, 
thus defining the behavior. 

When executing the behavior, each action is either 
triggered manually through the graphical interface or through 
some sensory observation. The important constraint is that the 
actions must execute in the correct order, as defined in the 
behavior. The behavior is repeatable and continues for as long 
needed to clear rubble. Of course, the mapping phase in the 
first action is only done once. 

B. Robotic Arm Manipulation 

The arm manipulation software was developed by 
researchers at partner institution [14][15], participating in this 
integration project. 

The purpose of this software module is to learn the 
(previously unknown) inverse kinematic model of the robotic 
arm, and use it to carry out the grasping/depositing actions. 

During the learning phase, we perform data collection 
with random-walk motor-babbling movements of the arm, 
while the target object is being held in the gripper (see Figure 
3). The collected data consists of the 3D position of the target 



  

object, and the arm motor commands. Thus far target objects 
are marked with ARToolKit markers, whose position is 
extracted from a basic usb camera’s images. Once this data 
set is collected, we use it to train an artificial neural network 
to learn the mapping from the target object position to the arm 
commands. 

An interesting benefit of this approach, is the ability to 
perform on-field “re-calibration” of the inverse kinematics, 
should degradations or damages occur to the arm, impacting 
its performances. Should e.g. one of the joints fail (or 
misbehave), the arm may continue working in a degraded 
mode after going into a new round of motor babbling process, 
with empirical learning of the new inverse kinematics 
corresponding to the degraded configuration. 

     

Figure 3. Motor babbling learning (left) and grasping action 

execution (right) 

This learned model is subsequently used to perform 
grasping actions with the arm to take objects from the human, 
when the 3D position of the target object is extracted from the 
camera image (see Figure 3.  - right). The same principle is 
applied when depositing objects; a similar marker is used to 
designate the deposit position. 

C. Mobile Navigation 

The ROS navigation stack [16] is a collection of mobile 
navigation software packages developed by the ROS 
community. It offers capabilities for map building, 
localisation, local obstacle avoidance and global path 
planning and execution. A significant limitation within the 
context of our scenario is that the navigation stack is designed 
for 2D environments, however at the time of writing no 
similar 3D navigation packages exist in ROS. 

We apply Gmapping 2D SLAM (grid-mapping) [17] as a 
baseline for a map building phase in the “Explore” action. 
The Gmapping node also continues to provide localization 
throughout the execution of the behavior. Alternatively, a 
static map may be used with a pure localization node AMCL 
(Adaptive Monte Carlo Localisation). In both cases the 
environment representation is a regular grid map with 
customizable resolution. 

Navigation to waypoints is accomplished using a local and 
a global planner. The local planner provides obstacle 
avoidance and the global planner computes the global path to 
the waypoint. Each planner also has its own cost-map. A cost 
map is a grid map as above, with the addition of a cost value 
for each cell, where the cost indicates how traversable the cell 
is. The local planner uses a small rolling-window cost map 

with the robot at the center, which is dynamically cleared and 
populated with obstacles based on the latest laser scans. The 
global cost map is created from the SLAM/static map as 
above. This scheme allows the robot to plan a path through 
the mapped environment while being able to dynamically 
adapt to unexpected obstacles with the local planner. 

 

               Figure 4. ROS navigation stack (GUI screenshot) 

V. EXPERIMENTAL DATA COLLECTION 

 As a means to test in demanding conditions some of the 
outcomes (navigation related) capabilities worked out in 
INTRO, a series of outdoor trials in a relevant environment 
(the quarry of Haut-Le-Wastia, Belgium) was started in July 
2013. Additionally, this series of outdoor trials has been 
further used as an opportunity to prepare and train aiming at 
attending the EURATHLON competition (that took place on 
September 2013 in Berchtesgaden, Germany [18] and for 
which authors ranked 3

rd
 for the manipulation contest). 

During the first trial, experimental data collection has 
been carried out, focusing on mobile navigation. The 
experiment has been performed at a large marble and granite 
rock quarry (see Figure 5). This environment is intended to 
reflect navigation in rugged terrain and possible search/rescue 
operations carried out in such terrain.  

The purpose of the experiment was both (1) 
familiarization with the operational setup for the robotic 
platform deployment and exploitation, and (2) sensor data 
collection for subsequent offline 3D environmental model 
construction. This model could be used for autonomous 
navigation and visualization. Depending on the results, it may 
then be desired to move from offline to online processing. 
The focus was on mobile navigation sensors. Specifically, the 
following data was collected: 

 Raw wheel odometry from the Husky mobile robot 

 Xsens IMU 3D robot orientation data 

 GPS coordinates using Septentrio AsteRx 2i HDC 

 SICK LMS151 scanning laser range-finder (replacing the 
Hokuyo URG) 

 Bumblebee XB3 stereo vision camera 

 



  

 

       Figure 5. Quarry environment where data collection was done 

The SICK LMS151 scanner was on a fixed mount, and it 
will be investigated how conveniently and effectively these 
data can be used together with the IMU orientation data for 
3D model construction. A planned advancement to this 
configuration is a motorized pan-tilt mount for the SICK 
scanner, which will enable 3D environment scans.  

Figures 5 and 6 illustrate the environment where the data 
collection was performed. Salient features of the environment 
are:  

 Reddish-brown granite rock faces and large to medium 
sized obstacle rocks 

 Gray small-medium sized gravel rocks and gravel 
surfaces 

 Light gray-brown fine dirt surfaces of varying inclination 

 Sparse green bushes and shrubbery 

This testing environment offers a wide range of visually 
detectable features, varying inclination of surfaces and 
obstacles of different shapes and sizes. It is well suited to a 
family of robotic experiments of a search and rescue nature, 
addressing both navigation and possibly arm manipulation. 
Preliminary examinations of the collected data show it to be 
promising.  

 

 

 

 

       Figure 6.  Mobile navigation sensor data collection 

VI. CONCLUSION 

This paper presented capabilities developed towards a 
USAR mobile robot assistant in a rubble clearing task. 
Specifically this consists of arm manipulation, navigation and 
high level sequence learning.  

We additionally performed a sensor data collection 
experiment in mobile navigation, for offline processing of the 
data. The purpose is to use the data to perform 3D 
environment modeling for autonomous navigation and 
visualization. This implies extending the application scope to 
work in this type of rugged outdoor environments. Following 
data analysis, the next step would be implementation of 
online environment modeling. Additionally, the mount of the 
SICK laser will be changed to a motorized pan-tilt device to 
enable 3D scanning. Additional experiments in the quarry 
environment may be planned to involve arm manipulation. 
The quarry would be well suitable to manipulation 
experiments due to an abundance of differently shaped and 
sized rocks for grasping.  

Future improvements in existing capabilities are required, 
which implementation is in progress: 

 Improvement of autonomous navigation capabilities from 
2D to 3D models. It would include map building, 
obstacle avoidance and path planning. 3D laser scanning 
is required for this. It seems unlikely that existing 2D 
ROS navigation stack packages can be reused in their 



  

current form. Probably a promising way of achieving this 
is modifying the source code of the existing navigation 
packages to work with 3D environment models. 

 Validation of the planned extensions to support 
operations in 3D environments on the basis of collected 
data as well as continued field trials at the Haut-le-Wastia 
quarry through autumn 2013. 

 Migration from ARToolKit marker supported grasping of 
objects, to real rubble objects, whose localization in the 
3D space would need to be vision based. Architecturally, 
the ARToolkit vision processing software module can be 
easily replaced with a different module that provides the 
position of the grasp object.  

 Definition and implementation of safety protocols during 
the execution of the scenario, to ensure no dangerous 
interaction between the robot and USAR workers or the 
environment. 
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