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Abstract—This paper suggests the adoption of internal models
for coding sensorimotor schemes. The reported experiments
demonstrate how the simulation and predictive capabilities sup-
plied by internal models can provide a robot with important
cognitive tools, from behaviour selection and recognition to the
recognition of the authorship of an action. In the context of
active learning in robotics, internal simulation mechanisms can
play an important role. For example, their predictive capabilities
could allow for more efficient exploration behaviours. Analysing
the prediction error of simulated movements could drive an
artificial agent towards unexplored or poorly explored regions
of its actions space.

I. INTRODUCTION

Theories of grounded and embodied cognition focus on the

role of the body of an agent for the acquisition of knowledge

[1]. In particular, grounded cognition theories consider internal

simulations of the sensorimotor experience, or re-enactments

of experienced perceptual, motor and introspective states, as

important mental activities which could account for the off-

line characteristics of cognition.

In the quest of implementing internal simulation mecha-

nisms, forward and inverse models have been proposed [2][3].

A forward model is an internal model which incorporates

knowledge about sensory changes produced by self-generated

actions of an agent. Given a sensory situation St and a motor

command Mt (intended or actual action), the forward model

predicts the next sensory situation St+1. While forward models

(or predictors) present the causal relation between actions and

their consequences, inverse models (or controllers) perform the

opposite transformation providing a system with the necessary

motor command Mt to go from a current sensory situation St

to a desired one St+1.

Forward models were first proposed in the control litera-

ture as means to overcome problems such as the delay of

feedback on standard control strategies and the presence of

noise, both also characteristic of natural systems [4]. In the

cognitive sciences, such mechanisms have been suggested for

modelling several behaviours, ranging from the cancellation of

the tickling sensation [5] to the accounting for schizophrenia

[6]. The main idea stems from the relevance of the prediction

of the consequences of self-produced actions: we are better

in predicting the outcomes of our motor commands than the

ones of other agents [7].

The recent discovery of mirror neurons in the central

nervous system also supports the general idea of internal simu-

lations. The mirror neuron system is thought to be involved in

internal simulations of the sensorimotor loop in learning and

planning, as it has been found that neurons in this area show

activation both when an individual performs a specific action

and when the individual observes the same action performed

by a demonstrator (for a recent review, see [8]). It seems that

an observer understands a demonstrated behaviour comparing

a simulated execution of it with a set of primitives stored in

its memory.

St

St+1
Inverse

Model

Forward

Model
S∗

t+1

Mt

Fig. 1. Inverse-Forward Model pair. Simulating the outcome of a sensorimo-
tor behaviour consists of two steps. First, the inverse model predicts the motor
command necessary to reach a desired sensory situation, according to the
sensorimotor behaviour it is coding. Then, an efferent copy of this command
is sent to the coupled forward model, for anticipating the sensory situation
which would have resulted from the application of that motor command.

In the philosophy and cognitive science literature, the

mechanism of mental simulation is often referred as mental

imagery. This phenomenon has been defined as a quasi-

perceptual experience which resembles perceptual experience

but occurs in absence of external stimuli [9]) and it is thought

also to influence movement execution and the acquisition

and refinement of motor skills [10]. For example, mental

training (that is, the practice of using motor imagery for

enhancing motor performances) has become a popular method

for professional athletes and for the rehabilitation in patients

affected by cerebral lesions. In [11], a model of a robot

controller was presented that allows an artificial agent to au-

tonomously improve its sensorimotor skills. This was achieved

by generating additional imaginary examples that can be used

by the controller itself to improve the performance through a

simulated mental training.

In the context of active learning in robotics, internal



simulation mechanisms can play an important role. For

example, such predictive capability could allow for more

efficient exploration behaviours. Analysing the prediction

error of simulated movements could drive an artificial agent

towards unexplored or poorly explored regions of its actions

space. The internal models proposed here will be used to

enhance the pre-defined motion primitives as have been

used in previous work in the playground experiment [12].

There, the action selection and exploration was based on a

curiosity-driven method.

In this context, forward and inverse models (Figure 1)

become central players, as they naturally fuse together sensory

and motor information, providing agents with multimodal rep-

resentations [13]. Due to their functioning, these models allot

agents with internal simulations, anticipation and predictive

capabilities.

Here, we present several robotics experiments in which we

adopted the internal models paradigm. We strongly believe that

research on grounded cognition, internal models and internal

simulations needs to be pushed forward, if we want robots to

naturally interact with the environment and with other agents.

II. EXPERIMENTS

Sensorimotor learning is fundamental for the development

of cognition. Here, we present experiments in which a hu-

manoid robot (Nao from Aldebaran) learned sensorimotor

behaviours by self-exploring its action space or by observ-

ing a skilled demonstrator. Representing such sensorimotor

schemes as internal models provided the robotic agent with

internal simulations and predictive capabilities, which we

tested in experiments on behaviour selection, human behaviour

recognition and self-other distinction. The main idea behind

such experiments was that prediction errors can be used for

selecting the best strategies to adopt for reaching a desired

goal or for classifying observed behaviours.

In [14], a mechanism for behaviour selection has been

implemented using internal simulations. We programmed a

Nao robot for learning a repertoire of behaviours by self-

exploration, namely motor babbling. The learning session con-

sisted in the robot collecting and mapping sensory (estimated

position of its hand) and motor information (command sent to

the joints of the corresponding arm) while performing random

movements. For each arm, a sensorimotor scheme has been

coded as an inverse - forward model. For emphasizing the

difference between the two sensorimotor schemes, one of the

arm was extended with a tool, changing its original action

space. Figure 2 shows a top-down view of the action spaces

explored during babbling, with and without the extension

tool. Simulations of the sensorimotor loop have been used

for selecting the best strategy from the action repertoire for

reaching a desired goal, namely selecting the arm resulting

in the smallest hand-target distance. Internal simulations for

each of the sensorimotor behaviours (left arm, with or without

tool, or right arm) are performed before executing the actual

motor command. The predicted outcome is compared with the

Fig. 2. Reachable spaces for the hands of the Nao, with or without the
extension tool on the left arm.

Fig. 3. Typical frames of approach and displace actions.

desired goal (an object handed to the robot by the user) and

prediction errors are used for selecting the best arm to use

(e.g. the one with or without a tool).

The same paradigm has been adopted for human behaviour

understanding. During action demonstration, like in Figure

3, the observed sensory situation is compared with the ones

predicted by simulating each known sensorimotor scheme

stored in the action repertoire. Prediction errors are then used

for behaviour classification and for target object identification

[14]. In a recent experiment, we trained the models using data

taken from the observation of self-produced actions, instead

of using data taken from the observation of a human demon-

strator, as reported in [14]. Prediction errors are then used for

classifying sequences of three different actions, resulting in a

correct classification rate of 78.40% of the observed frames,

against 89.45% reached with training the models with data

taken from human demonstrations. It is plausible that the

Fig. 4. Self-other distinction experiment: Nao observing itself performing
a controlled trajectory and observing a Puma robot performing a similar
trajectory. An inverse-forward model has been trained with data taken from
self-exploration. Prediction errors coming from the simulations of both the
observed trajectories are statistically significantly different (p < 0.001). With
the prediction error of the NAO observing itself being lower than when
observing the PUMA robot.



non-ownership of the observed action affects the prediction

performances, this was confirmed by the results of an exper-

iment on self-other distinction[15]. In this, we demonstrated

how a humanoid robot which acquires a sensorimotor scheme

through self-exploration, performs simple trajectories that hold

intrinsic and constant characteristics related to the internal

dynamics. The NAO-specific dynamics are clearly present

when analysing the velocity profile of the agent. Comparison

of these characteristics provides the agents with a basic tool

for distinguishing between self and others (see Figure 4).

III. CONCLUSION

We strongly support the use of internal models for encoding

sensorimotor schemes. We demonstrated how their simulation

and predictive capabilities can provide a robot with important

cognitive tools. We would like to push forward the investi-

gation on these types of models, which we believe have not

been fully studied and their capabilities not properly exploited

in the context of active learning and exploration in robotics.
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