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ABSTRACT
We propose a computational model based on inverse-forward
model pairs for the simulation and execution of actions. The
models are implemented on a humanoid robot and are used
to control reaching actions with the arms. In the experimen-
tal setup a tool has been attached to the left arm of the robot
extending its covered action space. The preliminary inves-
tigations carried out aim at studying how the use of tools
modifies the body scheme of the robot. The system per-
forms action simulations before the actual executions. For
each of the arms, predicted end-effector positions are com-
pared with the desired one and the internal pair presenting
the lowest error is selected for action execution. This allows
the robot to decide on performing an action either with its
hand alone or with the one with the attached tool.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Theory, Experimentation

Keywords
Internal models, inverse and forward models, action simula-
tion, tool-use

1. INTRODUCTION
In this paper, we present preliminary results on a compu-

tational model for action execution. This model will be ex-
tended to implement action recognition. The Nao humanoid
from Aldebaran has been adopted as robot platform. Inter-
nal models are used for predicting the end position of both
arms. An extension tool is attached to the left hand of the
robot to emphasize the power of predictor-controller pairs
in selecting the best arm for action execution.

We understand the physical world according to our own
experience. The faculties, capabilities and skills to dynam-
ically interact with the world, which as adult humans we
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posses, emerge through a long process of tuning and rehears-
ing of sensori-motor schemes. A very important example is
the acquisition of the sensori-motor schemes that code for
the capabilities and reaches of our body. This set of schemes
provides us with a notion which we exploit in order to per-
form tasks such as throwing, reaching and grasping, which
have helped us through our development as a species. A pro-
posed mechanism to code these schemes are internal models.
In this work we investigate the capabilities of forward and
inverse models.

Forward models were first proposed in the control liter-
ature as means to overcome problems such as the delay of
feedback on standard control strategies and the presence of
noise characteristic of natural systems [4]. A forward model
is an internal model which incorporates knowledge about
sensory changes produced by self-generated actions of an
agent. Given a sensory situation St and a motor command
Mt (intended or actual action) the forward model predicts
the next sensory situation St+1. Much research has been
done on computational forward models for action prepara-
tion and movement, with highly functional models that ac-
count, for example, for hand trajectory planning [3].

In cognitive robotics, an interesting implementation is pre-
sented by Dearden [2] where a robot learns a forward model
that successfully imitates actions presented to its visual sys-
tem, learning from a social context using a forward-inverse
model pair.

While forward models (or predictors) present the causal
relation between actions and their consequences, inverse mod-
els (or controllers) perform the opposite transformation pro-
viding a system with the necessary motor command (Mt)
to go from a current sensory situation (St) to a desired one
(St+1). Theories on how the human Central Nervous System
(CNS) manages sensorimotor control suggest that a modular
approach is implemented in the brain. Predictor-controller
pairs, modelling different goal-directed actions, are run in
parallel for assessing which one is more plausible in the given
context. In [7], Wolpert suggested coupled inverse and for-
ward models for action execution and recognition.

Tool use is an important skill that is acquired during early
childhood in humans and requires several cognitive abilities
related to sensorimotor interaction. Bril et al.[1] consider
tool-use as an instance of a goal-directed action. Tool-use
requires both an action and a cognition component. Mar-
avita and Iriki [5] propose that we hold an adaptive body
map comprising body posture and shape. They suggest that



Figure 1: Top-down view of the Nao with an illustration of the
reachability space for each end-effector.

the body schema is extended temporarily with the tools we
are using (“as if our own effector (e.g. the hand) were elon-
gated to the tip of the tool”). From this perspective, the
extended arm experiment on the robot can be seen as the
body of the robot being temporarily extended by a suitable
tool for a specific task (namely reaching an object).

2. PRELIMINARY RESULTS
We implemented a system for generating reaching com-

mands towards given points in the space. Figure 1 illus-
trates how different the action spaces of both arms can be,
if the robot is provided with an extension tool on its left
arm. While far-away positions can be reached with the left
extended end-effector, other positions (like the ones close to
the chest) are only reachable with the right arm. A forward-
inverse model pair has been learned for each arm of the robot
(see Figure 1) using a motor babbling mechanism previously
implemented [6]. A k-Nearest Neighbours based algorithm
has been adopted, together with the knowledge bases (one
for each arm) collected during babbling, as the inference al-
gorithm for both inverse and forward models.

Before executing the necessary motor command to reach
a position, an internal simulation shown in Fig. 2 is run
as follows: find the motor command Mt which given the
sensory situation St, composed by the current coordinates
of the arms, brings the system to the desired sensory situ-
ation St+1, composed by the coordinates of the goal posi-
tion. This process is performed by a learned inverse model
of each arm. Use the predicted motor command and the
current sensory situation to find the next sensory situation.
Again, this process is performed by a forward model of each
arm. Predicted end-effector positions are compared with
the desired one and the forward-inverse model pair with less
error is selected for actual execution, namely moving the
corresponding arm. Figure 3 shows the errors of both pairs
when presented with different end positions estimated from
a marker.

3. FUTURE WORK
These preliminary results make only use of one-step pre-

dictions, future work will include the use of the predicted
sensory situation as input back to the system in what can
be seen as long-term predictions. Internal models will also
be used for goal-directed action recognition. Experiments
on human-robot interaction will be performed for investi-
gating whether a robot can direct user’s action (like with
pointing to an object) and how robot expectations on user
reactions can be modelled as a prior distribution on the cou-
pled inverse-forward models.

Figure 2: Inverse (controller) - forward (predictor) model pairs.
SL(t) and SR(t) are the (x, y, z) coordinates of each end-effector
at time t; S(t+ 1) is the desired position to reach; S∗

L
(t+ 1) and

S∗

R
(t + 1) are the predicted final positions for each end-effector;

ML(t) and MR(t) are the predictions of the motor configurations
for reaching S(t+ 1) from SL(t) and SR(t), respectively.

Figure 3: Distance between the predictions of end-effector po-
sition and the desired point.

Future work will also consider an active choice between
several tools for a given task, and will include additional
actions apart from reaching an object.
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