
Sensorimotor Loop Simulations as a Prerequisite for Imitation.
Experiments with a Humanoid Robot

Developmental Robotics is a recent interdisciplinary �eld involving robotics, cognitive 
science, developmental psychology and neuroscience which aims at building robots ca-
pable of learning and interacting like humans do and, at the same time, providing a test 
platform for the theories of neuroscientists and of developmental and cognitive scien-
tists.

We as humans, are able to understand the motor actions of an interacting individual 
thanks to social skills that let us empathize with a demonstrator and simulate its behav-
iour. This hypothesis has been supported by the neuroscienti�c discovery of the Mirror 
Neurons System, which is thought to be involved in internal simulations of the senso-
rimotor loop.

In this work we focus on imitation as a learning mechanism for robots and in particular 
on the role sensorimotor loop simulations play in action recognition and action execu-

There is evidence that the primitive exploratory actions of human infants come from 
random acts known as body babbling. Using such a non-social learning behaviour, new-
borns acquire the capability to understand how their movements a�ect their perception 
of the environment. This capability is gradually reinforced and extended through social 
learning. 
The skills to dynamically interact with the world, which as adult humans we posses, 
emerge through a long process of tuning and rehearsing of sensori-motor schemes. A 
very important example is the acquisition of the sensori-motor schemes that code for the 
capabilities of our body, e.g. where an object can be reached. A proposed mechanism to 
code these schemes are internal models [2, 3, 4, 7]. 

In this work we investigate the capabilities of two such models. First, we look at a forward 
model which is an internal model that incorporates knowledge about sensory changes 
produced by self-generated actions of an agent. Forward models (or predictors) present 
the causal relation between actions and their consequences. 
Secondly, we investigate inverse models (or controllers) which perform the opposite 
transformation providing a system with the necessary motor command to go from a cur-
rent sensory situation to a desired one.   Theories on how the human Central Nervous 
System (CNS) manages sensorimotor control suggest that a modular approach is imple-
mented in the brain. Predictor-controller pairs, modelling di�erent goal-directed actions,
are run in parallel for assessing which of these pairs is more plausible in the given context. 

We tested this hypothesis on a humanoid robot (Aldebaran Nao), which was programmed 
for learning autonomously, through body babbling,  a couple of predictor-controller pairs 
for reaching positions in space with its two arms [6]. In order to have a set of di�erent pos-
sibilities for action selection, we extended the left arm  of the robot with a tool, which sig-
ni�cantly modi�es the working space of the arms [1, 5].
The system successfully learns and predicts the causal relationship between the motor 
commands applied to the robot’s arms and  neck with the visual perception of its moving 
hands.
Running internal simulations of reaching actions with both arms, allows the robot to 
choose which is the best arm to use for reaching an object before executing the action 
(Fig. 1,2,3,4). 

The same paradigm can be applied in action recognition (Fig. 5, 6). Internal simulation of 

Figure 2.
Top-down view of the Nao with an illustration of the reachable space for each end-e�ector. 

Figure 3.
Two Controller-Predictor pairs.
Given the current sensory situation, composed by the coordinates of the hands, S(t), and the coordinates of 
the goal position, S(t+1),  the controller for each arm proposes a motor command M(t). These M(t) and the 
current sensory situation are passed to each of the forward models which in turn predicts a next possible 
sensory situation. These predicted hand positions are compared with the desired one and the pair with less 
error is selected for actual execution, namely moving the corresponding arm.

Figure 1.
Body Babbling for learning the sensorimotor schemes that code for the capabilities of the arms. 

Figure 4.
Action execution demonstration using the controller-predictor pairs from Figure 3.
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Figure 5.
Test actions for the experiments on action recognition. Features are extracted from videos of three actions for 
learning controller-predictor pairs as in the action execution example. A di�erent controller-predictor pair is associ-
ated with each action.
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Figure 6.
Behaviour recognition mechanism with three predictor-controller pairs. Each of these pairs is associated 
with an action. Only one time slice is represented. In the behaviour recognition case, S(t) and S(t+1) code for 
the states of the observed demonstration. The sensory situation S(t) is composed by variables representing 
the relations between the position of the hand of the demonstrator and the position of the object. The 
motor command M(t) is represented by the translation to be applied to the hand.
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