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The idea that “Thinking is restrained speaking or acting”  anticipated the idea that behaviours can be simulated in our brain.  Three basic assumptions are made:

 - Simulation of actions. Motor structures are activated resembling the activity of action execution without producing any movement. 
 - Simulation of perception. We are capable to image perceiving something, without any external stimulus.  
 - Anticipation. A simulated action can produce perceptual activity that resembles the activity that would have occurred if the action had really been performed. 

Recent theories suggest that activity in motor structures, when initiating an action, can occur while its execution is suppressed by the primary motor cortex. Furthermore , internal simulations of 
the sensorimotor loop seem to play an  important role not only in action execution but also in action recognition. Both of these are basic prerequisites for the  imitation of an observed action.  
We as humans, are able to understand the motor actions of an interacting individual thanks to the social skills that allow us to empathize with the demonstrator and simulate its behaviour. This hy-
potesis is now supported by the neuroscienti�c discovery of Mirror Neurons System, which is thought to be involved in internal simulations of the sensorimotor loop in learning and planning.  

There is evidence that the primitive exploratory actions of human infants come from 
random acts known as body babbling. Using such a non-social learning behaviour, new-
borns acquire the capability to understand how their movements a�ect their perception of 
the environment. This capability is gradually reinforced and extended through social learn-
ing.  The skills to dynamically interact with the world, which as adult humans we posses, 
emerge through a long process of tuning and rehearsing of sensori-motor schemes. A very 
important example is the acquisition of the sensori-motor schemes that code for the capa-
bilities of our body, e.g. where an object can be reached. A proposed mechanism to code 
these schemes are internal models. 

We investigated the capabilities of two such models. First, we looked at a forward model 
which is an internal model that incorporates knowledge about sensory changes produced 
by self-generated actions of an agent. Forward models (or predictors) present the causal re-
lation between actions and their consequences. 
Secondly, we investigated inverse models (or controllers) which perform the opposite trans-
formation providing a system with the necessary motor command to go from a current sen-
sory situation to a desired one.   Theories on how the human Central Nervous System (CNS) 
manages sensorimotor control suggest that predictor-controller pairs, modelling di�erent 
goal-directed actions, are run in parallel for assessing which of these pairs is more plausible 
in the given context. 
We tested this hypothesis on a humanoid robot (Aldebaran Nao), which was programmed 
for learning autonomously, through body babbling,  a couple of predictor-controller pairs 
for reaching positions in the space with its two arms. In order to have a set of di�erent possi-
bilities for action selection, we extended the left arm  of the robot with a tool, which signi�-
cantly modi�es the working space of the arm.
The system successfully learned and predicted the causal relationships between the motor 
commands applied to its arms and neck with the visual perception of its moving hands. 
Running internal simulations of reaching actions with both arms, allows the robot to choose 
which is the best arm to use for reaching an object before executing the action (see Figure 4). 

Several mirror system inspired architectures have been designed, with the aim of using in-
ternal models in robotics to produce simple movements or behaviours as well as to under-
stand them when produced by others.
By means of modularity multiple paired inverse-forward models (one for each known 
action) can act in parallel. The perceived state and, if exists, a desired goal are sent to all the 
inverse models, resulting in a generation of multiple motor commands (e�erence copies) 
which are sent to their respective forward models. Each forward model simulates the sen-
sory consequences of the control created by its coupled inverse model; then each sensory-
motor consequence is compared with the actual demonstrator state. The inverse model 
with higher con�dence (less distance with the demonstration) is selected as the estimate of 
the demonstrator's behaviour (when observing behaviours) or for control generation 
(when reproducing behaviours).

Using this approach we model a system which can recognize actions performed on objects 
by a demonstrator. The actions are described by the behaviour of di�erent variables that 
characterize the relations between the position of the hand of the demonstrator and the 
position of the  object.

Figure 2.
Top-down view of the Nao with an illustration of the 
reachable space for each end-e�ector.
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Figure 3.
Two Controller-Predictor pairs.
Given the current sensory situation, composed by the coordinates 
of the hands (St) and the coordinates of the goal position (St+1),  
the controller for each arm proposes a motor command (Mt). This 
Mt and the current sensory situation are passed to each of the for-
ward models which in turn predicts a next possible sensory situa-
tion. This predicted hand positions are compared with the desired 
one and the pair with less error is selected for actual execution, 
namely moving the corresponding arm.

Figure 1.
Body Babbling for learning the 
sensorimotor schemes that code 
for the capabilities of the arms
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Figure 5.
Features are extracted from videos of three test actions for learning controller-predictor pairs as in the action execution 
example. A di�erent controller-predictor pair is associated to each action.
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Figure 6. 
Recursive simulation of the sensorimotor 
loop for one action.
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The sensory situation S(t) is composed by 
variables: ∆d, a, c. 
The motor command M(t) is represented 
by the translation (∆x, ∆y, ∆z) to be applied 
to the hand.

Figure 7.
Behaviour recognition mechanism with 
three predictor-controller pairs. Each of 
these pairs is associated to an action. 
Only one time slice is represented. 
In the behaviour recognition case, S(t) 
and S(t+1) code for the states of the ob-
served demonstration
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Figure 4.
Action execution demonstration.
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