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Abstract—Motor Babbling has been identified as a self-
exploring behaviour adopted by infants and is fundamental for
the development of more complex behaviours, self-awareness and
social interaction skills. Here, we adopt this paradigm for the
learning strategies of a humanoid robot that maps its random
arm movements with its head movements, determined by the
perception of its own body. Finally, we analyse three random
movement strategies and experimentally test on a humanoid
robot how they affect the learning speed.

I. INTRODUCTION

Embodied agents, humans, other animals as well as robots,
can generate useful sensory stimulations by interacting with
the environment. Their actions change the environment and
what they perceive from it; on the other hand, what they
perceive influences their actions consequently. This is known
as sensorimotor coordination[1].

The discovery of mirror neurons demonstrates how closely
cognitive concepts and sensorimotor activity are coupled in the
human brain. Mirror neurons are thought to play a fundamental
role in social cognition and in understanding behaviours and
intentions of others[2]. Supporters of this theory claim that,
somehow, we are able to predict what a demonstrator is
doing, because some areas in the brain, including the mirror
system, internally simulate aspects of the sensorimotor loop in
learning and planning. We understand an observed behaviour
as we compare a simulated execution of it with a set of
motion primitives we have in our memory. But, how much do
perceptual abilities require motor skills? In order to imitate
a demonstrator, an observer has to recognize the action, but
in order to recognize the action the observer must be able to
perform the action. This tricky question can be answered if
we look at the development as an incremental process: infants
learn an ability on top of other abilities already present[1].
Body babbling observed in infants has been classified by Melt-
zoff and Moore[3] as a mechanism that provides experience
for mapping movements to the resulting body configurations.

Such a sensorimotor stage, where infants explore the en-
vironment in terms of the physical actions they can perform,
inspired several robotics studies. In [4], the role of exploration
is to gather evidence to form and test models. In [5], Demiris
et al. propose a way for combining knowledge through explo-
ration and knowledge from others, through the creation and

Fig. 1. A typical babbling sequence using the Nao platform. In the lower
part, the corresponding frames grabbed by the onboard camera (note that the
camera is placed below the fake eyes).

use of mirror neuron inspired internal models. Saegusa et al.,
in [6], consider motor-babbling-based sensorimotor learning
as an effective method to autonomously develop an internal
model of the own body and the environment using multiple
sensorial modalities.

Here, we adopt motor babbling for the learning strategies of
a humanoid robot that maps its random arm movements with
its head movements, determined by the perception of its own
body. We also analyse three random movement strategies and
experimentally test on a humanoid robot how they affect the
learning speed.

II. LEARNING THROUGH SELF-EXPLORATION

We implemented learning through self-exploration on a
humanoid platform1 whose dimensions resemble those of a
child, actually simulating the real visual input perceived by a
young human subject (see Figure 1).

During the learning process, the robot performs random
arm movements and tries to estimate the position of its end-
effector (the hand, where a marker is placed on), analysing
the frames grabbed from its head camera. We implemented an
attentive system composed by two modules: marker detection2

and motion detection. When a marker is detected, the head of
the robot is rotated in order to focus on it, and the current
configuration of the joint angles of the arm and of the neck

1NAO robot from Aldebaran. We adopted the NAO-TH framework
(http://www.naoteamhumboldt.de)

2We use the ARToolkit for detecting markers
(http://www.hitl.washington.edu/artoolkit).
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Fig. 2. Learning Algorithm. The marker detection module inhibits the motion
detection module, giving a higher saliency to the hand of the robot.

are stored and coupled with the estimated 3D position of the
marker (representing the hand). Due to the limited opening
angle of the camera and the robot’s short arms (like a child),
for most of the time the robot has to rotate its head searching
for the marker. The motion detection module is used in order
to find the moving arm. Frame by frame, when the head is
not moving, the optical flow between the current frame and
the previous one is computed. The magnitude of the optical
flow is fed into the CAMShift algorithm to find the centroid
of the fastest moving area of the video to look at. Figure 2
shows the scheme of the learning algorithm.

III. PRELIMINARY RESULTS

The preliminary results we present here refer to three differ-
ent types of movement strategies for motor babbling: Purely
Random (PR), Random Walk (RW) and Inertial Random Walk
(IRW)3. Figure 3 shows typical trajectories of the arm joints
and of the neck joints for each type of babbling. PR generates
sparse commands in the action space and the long jumps in
the joints space often increase the probability to lose the sight
of the hand. Even if IRW is the strategy that better resembles
human motion, up to now RW seems to be the best strategy in
terms of learning speed, as depicted in Table I4. IRW seems
to perform worse than RW due to its tendency to follow the
motion inertia towards areas wherein the hand is partially
occluded by the shoulder of the robot. The last row of Table
I represents, for each strategy, the maximum jump in degrees
that a random movement can perform5.

3In PR, random values are sampled from a uniform distribution over the
range of each joint of the arm; in RW, random steps (increase/hold/decrease
the joint by angle-step) are sampled from a uniform distribution; in IRW,
random steps are sampled from a non-uniform distribution, where the previous
performed step has a higher probability to be sampled. The babbling is
performed on 4-DoF of the Nao arm: two each for shoulder and elbow.

4Low detecting rates depends on a high probability that movements go
outside the field of view of the camera, and on the time needed to find again
the arm by moving the head.

5The ranges are (in degrees): ShoulderPitch, from -120 to 120; Shoulder-
Roll, from -95 to 0; ElbowRoll from 0 to 90; ElbowYaw from -120 to 120.
In RW and IRW, only a maximum step of 10 degrees is allowed for each
joint. The maximum speed of the total movement (sum of all the joints) is
20 degrees per second for all strategies.

Fig. 3. In the upper part of the figure, typical values of the joints angles of
the arm for each strategy (PR, RW, IRW) are shown. The lower part shows
the values of the joint angles of the neck.

TABLE I
PRELIMINARY RESULTS

PR RW IRW

Detections per sec. 1.04 4.63 2.63

Max jump in deg. 665 40 40

IV. FUTURE WORK

The collected data could be used for generating unexplored
movement and for reaching unexplored positions in the action
space. Imitation of hand trajectories of a skilled agent could
be done through a mapping of the proprioceptive and external
data. Behaviours could be modelled by mapping regions of
the action space with the states of a discrete Hidden Markov
Model. Learning performance could be improved using a head
equipped with two pan-tilt mechanisms to reproduce both
neck movements and saccades. These learned skills are the
prerequisites for imitation learning in human-robot interaction.
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