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Abstract—Motor Babbling has been identified as a self-
exploring behaviour adopted by infants and is fundamental for
the development of more complex behaviours, self-awareness
and social interaction skills. Exploring the possible space of
movements and articulations is the first step towards social and
intentional behaviours.

We adopt motor babbling for the learning strategies of a
humanoid robot that maps its random arm movements with its
head movements, determined by the perception of its own body.
In this paper, we analyse three random movement strategies and
experimentally test on a humanoid robot how they affect the
learning speed.

We believe that intuitive human-robot interaction requires
physical and dynamic interaction and that creating a body map
through learning is a major prereuisite.

I. INTRODUCTION

Researchers in Human-Robot Interaction are interested in
developing models inspired by human cognitive processes, in
particular such that they result in a natural interaction be-
haviour. Providing the robot with skills that let the interaction
look clever and intuitive ensures a high level of satisfaction
for the interacting person.

Cognitive robotics takes its inspiration from developmental
studies in humans. Infants incrementally develop cognitive
abilities through the interaction with the environment and with
persons. Embodied agents, humans, other animals as well as
robots, can generate useful sensory stimulations by interacting
with the environment. Their actions change the environment
and what they perceive from it; on the other hand, what they
perceive influences their actions consequently. This is known
as sensorimotor coordination[1].

We understand an observed behaviour as we compare a
simulated execution of it with a set of motion primitives we
have in our memory. But, how much do perceptual abilities
require motor skills? In order to imitate a demonstrator, an
observer has to recognize the action, but in order to recognize
the action the observer must be able to perform the action. This
tricky question can be answered if we look at the development
as an incremental process: infants learn an ability on top of
other abilities already present[1]. Body babbling observed in
infants has been classified by Meltzoff and Moore[2] as a
mechanism that provides experience for mapping movements
to the resulting body configurations.

Such a sensorimotor stage, where infants explore the en-
vironment in terms of the physical actions they can perform,
inspired several robotics studies. In [3], the role of exploration
is to gather evidence to form and test models. In [4], Demiris
et al. propose a way for combining knowledge through explo-
ration and knowledge from others, through the creation and
use of mirror neuron inspired internal models. Saegusa et al.,
in [5], consider motor-babbling-based sensorimotor learning
as an effective method to autonomously develop an internal
model of the own body and the environment using multiple
sensorial modalities.

Exploring the possible space of movements and articulations
is the first step towards more intentional behaviours, like
exploring the world, wherein the agent wants to figure out how
its actions change the state of the world. Socially speaking, an
agent might be aware of itself, first, to be aware of the other
as a being like the self with individual wants and intentions.

In the next section, we discuss the different prerequisites for
intuitive interaction and how they could be implemented on a
humanoid robot. We then adopt one of the major prerequisites
for HRI - motor babbling and learning of a body map - for the
learning strategies of a humanoid robot that maps its random
arm movements with its head movements, determined by the
perception of its own body. We equip the robot with an ele-
mentary attentive system for perceiving its own body and for
moving its head to focus on it. A self-exploring robot that can
optimally adapt to the abilities of its own body in interaction
with the environment, itself and others, could give a human
the impression that it is intelligent, interested in something it
would like to discover, driven by the curiosity of exploring its
own movement. We analyse three random movement strategies
and experimentally test on a humanoid robot how they affect
the learning speed and how much energy they consume. We
also implemented a simple algorithm for learning body maps
through motor babbling. In the last section, we discuss how
the results on motor babbling could influence future research
aiming at intuitive human-robot interaction.

II. PREREQUISITES FOR INTUITIVE HUMAN-ROBOT
INTERACTION

What do we understand by intuitive interaction? This ques-
tion is related to expectations of the human, but can also



be described as an interaction that results in a satisfying
experience for the human requiring a low cognitive load. It
also means that the person does not have to learn a specific
interaction protocol for the human-robot interaction, but that
the robot adapts to the type of interaction initiated by the
person. Intuitive interaction is still possible in case the human
has no strong expectations on the robot, its capabilities, and
reactions, but enters the interaction scenario with his or her
expectations about interactions with other people, animals or
even non-intentional agents or objects.

We have identified three different kinds of prerequisites for
intuitive interaction:

a) Physical prerequisites for intuitive interaction. These are
properties of the morphology, sensors types, and appearance
of the robot. End-effectors with a large number of degrees
of freedom, and a variety of sensors, ideally similar to those
of a human, would facilitate the interaction and increase the
interaction experience for the user. The properties of the
environment or of the user interfaces also seem to be of
importance when used as tools for interacting with robots (see
for example [6]).

b) Representation of self and other. In [7], the authors
claim that perspective taking and Theory of Mind skills are
crucial for engaging in sensible short time interaction. For
implementing such abilities, the robot must be aware of its
own body and abilities. A prerequisite for HRI is, thus, the
ability to build a body map, which can be done through
body babbling, through interaction with the world or through
interaction with others. Meltzoff et al. demonstrated in [2]
that body babbling provides experience mapping movements
to the resulting body configurations. Hafner et al., in [8],
argued that self-other distinction is crucial for the development
of sophisticated forms of social interaction and proposed a
unified representation of a body schema in order to solve the
body correspondence problem. Self-other representation is also
necessary for simulating the action of the interacting partner
through perspective taking.

c) Social skills and expectations. When interacting, the robot
and the human constitute a dynamic system [9]. Each agent
might be able to predict and react to the actions and inten-
tions of the other, often without any verbal communication.
Developmental research supports the idea that actions are
learnt incrementally and one of the most powerful social skill
to do that is imitation. A robot might be able to learn by
imitation and to generalize the learned behaviours in different
environments and situations. Adapting to physical and social
circumstances is a fundamental prerequisite for HRI. With-
out any doubt, moreover, a robot able to express emotions
enhances naturalness of human-robot interaction [10].

We chose to investigate one of those prerequisites of intu-
itive interaction - representation of self and others - through
body babbling.

Fig. 1. A typical babbling sequence using the Nao platform. In the lower
part are the corresponding frames grabbed by the onboard camera (note that
the camera is placed below the fake eyes of the Nao).

III. MOTOR BABBLING IN A HUMANOID ROBOT

We implemented learning through self-exploration on a
humanoid platform1 whose dimensions resemble those of a
child, actually simulating the real visual input perceived by a
young human subject (see Figure 1).

During the learning process, the robot performs random
arm movements and tries to estimate the position of its end-
effector (the hand, where a marker is placed on), analysing
the frames grabbed from its head camera. We implemented an
attentive system composed by two modules: marker detection2

and motion detection. When a marker is detected, the head of
the robot is rotated in order to focus on it, and the current
configuration of the joint angles of the arm and of the neck
are stored and coupled with the estimated 3D position of the
marker (representing the hand). Due to the limited opening
angle of the camera and the robot’s short arms (like a child),
for most of the time the robot has to rotate its head searching
for the marker. The motion detection module is used in order
to find the moving arm. Frame by frame, when the head is
not moving, the optical flow between the current frame and
the previous one is computed. The magnitude of the optical
flow is fed into the CAMShift algorithm to find the centroid
of the fastest moving area of the video to look at. Figure 2
shows the scheme of the learning algorithm.

IV. RANDOM MOVEMENT STRATEGIES

The results we present here refer to three different types
of movement strategies for motor babbling: Purely Random
(PR), Random Walk (RW) and Inertial Random Walk (IRW).

The babbling is performed on 4-DoF of the Nao arm: two
each for shoulder and elbow. In PR, random values are sam-
pled from a uniform distribution over the range of each joint of
the arm; in RW, random steps (increase/hold/decrease the joint
by angle-step) are sampled from a uniform distribution; IRW is
a kind of smooth random walk algorithm which simulates the
inertia that a moving mass has when it changes the direction
of the motion. Instant by instant, a random step is sampled
from a uniform distribution, as in RW, and a small amount of

1Nao robot from Aldebaran. We adopted the NAO-TH framework
(http://www.naoteamhumboldt.de)

2We use the ARToolkit for detecting markers
(http://www.hitl.washington.edu/artoolkit).
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Fig. 2. Learning Algorithm. The marker detection module inhibits the motion
detection module, giving a higher saliency to the hand of the robot.

the previous step is added to the current one, simulating the
fact that the change of direction is not immediate, as the mass
tends to follow the past movement by inertia.

V. MOTOR BABBLING RESULTS

We simulated each strategy for 8 minutes. Figure 3 shows
typical trajectories of the arm joints and of the neck joints for
each type of babbling. PR generates sparse random commands
in the action space; even if it can be thought as a good strategy
able to explore uniformly the action space, the long jumps in
the arm joints configuration very often increase the probability
to lose the sight of the hand. This results in a very time
consuming strategy with a low marker detection rate. Table
I shows some results for each strategy. Low detecting rates
depend on a high probability that movements go outside the
field of view of the camera, and on the time needed to find
again the arm by moving the head.

Even if IRW is the strategy that better resembles human
motion, up to now RW seems to be the best strategy in terms of
learning speed. IRW seems to perform worse than RW due to
its tendency to follow the motion inertia towards areas wherein
the hand is partially occluded by the shoulder of the robot. The
last row of Table I represents, for each strategy, the maximum
jump in degrees that a random movement can perform3.

We also measured the sum of all the distances (in degrees)
covered by each joint for each strategy during a certain
amount of time, and compared these values between the
three strategies. We used this measurement as an estimate
of energy consumption. In simulation, IRW seems to be the
cheapest strategy. Consider, for a moment, that the arm is
moving toward a given direction. If a new control command is
generated toward the opposite direction of the current motion,
the simulated inertial strategy will not change instantaneously
the direction. Instead, it would lower the speed, first, and then
change direction. Going directly on the other direction (as

3The ranges are (in degrees): ShoulderPitch, from -120 to 120; Shoulder-
Roll, from -95 to 0; ElbowRoll from 0 to 90; ElbowYaw from -120 to 120. In
RW and IRW, only a maximum step of 10 degrees is allowed for each joint.

Fig. 3. In the left column of the figure, typical values of the joints angles
of the neck for each strategy (PR, RW, IRW) are shown. The right column
shows the values of the joint angles of the arm.

RW might do), would consume more energy. Due to its fast
changes of direction and movements, PR seems to be the worst
strategy, again.

The sum of the distances is an estimate of energy consump-
tion but, on the other hand, will give us the same amount of
energy spent for a continues movement from 0 to 40 and a
movement going from 0 to 20 and then back to 0, for instance.
For that reason, we also measured the electric current applied
to each servo and compared the averages of the total current
applied to all the motor between the three strategies.

We also considered the two servos of the neck (which
move accordingly to the attention system), measuring again
the distance (in degrees) covered by all the joints, (inclusive
the neck ones) for both energy measurements.

All the results confirm that PR is the worst babbling strategy
in learning a mapping between the joints configuration of the
neck and that of the arm, because of the low marker detection
rate and of the high energy dissipation.

Analysing qualitatively the expectation of a human observer
on the sensorimotor coordination skills of the robot, it can be
noted that PR has also a significantly low rating. The robot is
most of the time babbling and searching for the marker, due to
the often long jump between an arm movement and the next
one. RW and IRW have a higher rating.



TABLE I
DETECTION RATES FOR THE DIFFERENT STRATEGIES

PR RW IRW

Detections per sec. 1.04 4.63 2.63

Max jump in deg. 665 40 40

TABLE II
ENERGY CONSUMPTION ANALYSIS

PR RW IRW
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n Distance Covered

PR 1.000 0.696 0.616
RW 1.436 1.000 0.885
IRW 1.622 1.130 1.000

R
ea

l
R

ob
ot Electric Current

PR 1.000 0.752 0.766
RW 1.330 1.000 1.018
IRW 1.306 0.982 1.000

VI. LEARNING BODY MAPS THROUGH BODY BABBLING

Learning the mapping between the proprioceptive sensory
data and the visual acquired information does not consist
only in collecting the data through body babbling. The
knowledge base represented by the set of stored vectors
[markerPosition;neckConfiguration; armConfiguration]
can be used for inferring data given some evidences. For
example, given a point in the hand’s action space, a
learned body map can be used to predict the neck’s and
arm’s configurations which let the visually detected marker
(representing the hand) be as close as possible to the desired
point.

In this work, a mapping between the pro-
prioceptive data, represented by the 6D vector
[neckConfiguration; armConfiguration]4, and the
external data, represented by the (x, y) image coordinates of
the marker placed on the hand of the robot, has been used to
perform a simpler forward prediction: given a configuration
of the neck and arm joints, infers where the position of the
hand will be (here: the coordinates of the marker, if detected,
in the image).

Given a query (neck and arm joints), we used a k-Nearest
Neighbours algorithm to find the k closest vectors in the
knowledge base (using the OpenCV’s FLANN library). For
each vector, the elements related to the marker position are
extracted. The prediction of the outcome is computed as the
mean of these values. A control command is then applied
to each joint both of the neck and of the arm, as the mean
of the relative elements of the k vectors. This algorithm has
been adapted from [11], [12]. For each prediction, the error is
measured as the distance between the predicted point in the
image and the detected (if any) marker position resulting from
the applied control command.

Preliminary results on the prediction performance have been
collected from babbling samples using the RW and IRW

42 DoF for the neck and 4 DoF for the arm.

random movement strategies. A knowledge base has been
created from a session of RW babbling, resulting in 662
samples. Test data were extracted from the babbling with a
probability of 0.05 from the knowledge base (resulting in
27 samples). Given a frame of 320×240 pixels, the average
distance between the centre of the detected marker and the
predicted position of the marker has been measured as 15.29
pixels, using k = 5 in the k-NN algorithm.

A learned body maps using IRW babbling has also been
tested. With 548 samples in the KB and k = 5, 25 testing
predictions (extracted as before from the collected set) gave
an average error of 21.74 pixels.

It has to be noted, also, that during motor babbling the robot
attempts to follow the hand with its gaze, trying to maintain
the marker close to the centre of the image. This means
that the knowledge base is dense around the centre of the
image (approximatively an ellipse whose axes are 2/3 of the
image’s width and height) and sparse at the edges of the image,
resulting in better predictions when the arm’s and neck’s query
configuration is close to those stored configurations resulting
in a marker position around the centre of the image. This leads
to a more exact prediction when the marker is in the center
of the visual field.

VII. FUTURE WORK ON BODY BABBLING

In this work, we analysed three random movement strategies
in self-exploration for a humanoid robot. However, further
interesting strategies could be introduced.

Infants, for the essence of play, engage in particular activi-
ties for their own sake. This suggests the existence of a kind
of intrinsic motivation system [11] which provides internal
rewards during these play experiences. In [13], the authors
show a curiosity-driven robot which explores its environment
in search of new things to learn: the robot gets bored with
situations that are already familiar, and also avoids situations
which are too difficult.

However, establishing which is the best random movement
strategy is not the only aim of our work.

Imitation of hand trajectories of a skilled agent could be
done through a mapping of the proprioceptive and external
data. Behaviours, or motion trajectories, could be modelled
by mapping regions of the action space with the states of a
discrete probabilistic model[14], [15].

Learning performance could be improved using a head
equipped with a pan-tilt camera mechanism to reproduce both
neck movements and saccades. These learned skills are the
prerequisites for imitation learning in human-robot interaction.

Moreover, the simple adopted attentive system is the pre-
cursor for a more complex system able to detect faces and
eye-gaze directions. Studies on the development of cognitive
functions in infants (i.e., Baron-Cohen[16]) identify this set
of skills as necessary for the acquisition of complex social
behaviour, like joint attention. These abilities are fundamental
in the simulation theory of mind reading and compose part of
the so called Theory of Mind, that is that set of skills necessary
for understanding behaviours and intentions of others. A



very interesting robotic example is the system developed by
Scassellati [17] in an embodied theory of mind architecture
for a humanoid robot.

VIII. DISCUSSION

We showed and analysed three different random movement
strategies for generating control commands for the arm of a
humanoid robot and we showed how sensorimotor coordina-
tion can be performed using a simple attentive mechanism
which drives the robot’s head movements to focus its gaze
towards the moving hand. We used a simple technique for
learning the mapping between different sensory modalities and
we equipped the robot with predicting abilities of sensory
consequences (the position of a marker placed on the hand
of the robot) from control commands applied to its neck and
its arm.

Possessing a body map allows the robot to become aware of
itself. Self-awareness is a prerequisite for a robot interacting
in an intuitive way with a person We discussed how body
maps are important for a robot for having an intuitive human-
robot interaction and we demonstrated how body maps can be
learnt through body babbling. A robot behaving as self-aware
can increase the success in fulfilling the expectations of the
interacting partner.
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