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Abstract

We present an implementation of a biologically inspired
model for learning multimodal body representations in arti-
ficial agents in the context of learning and predicting robot
ego-noise. We demonstrate the predictive capabilities of the
proposed model in two experiments: a simple ego-noise clas-
sification task, where we also show the capabilities of the
model to produce predictions in absence of input modalities;
an ego-noise suppression experiment, where we show the ef-
fects in the ego-noise suppression performance of coherent
and incoherent proprioceptive and motor information passed
as inputs to the predictive process implemented by a forward
model. In line with what proposed by several behavioural and
neuroscience studies, our experiments show that ego-noise at-
tenuation is more pronounced when the robot is the owner of
the action. When this is not the case, sensory attenuation
is worse, as the incongruence of the proprioceptive and mo-
tor information with the perceived ego-noise generates bigger
prediction errors, which may constitute an element of sur-
prise for the agent and allow it to distinguish between self-
generated actions and those generated by other individuals.
We argue that these phenomena can represent cues for a sense
of agency in artificial agents.

Introduction
Empirical evidence from cognitive science and neuroscience
suggests that we, as humans, maintain an internal represen-
tation of our body, or a model of our motor system, and that
such an internal model would be involved in processes of
simulation of sensorimotor activity. These processes would
affect the way we experience the interaction with the en-
vironment and would be fundamental for the implemen-
tation of basic cognitive skills. For example, simulation
processes are thought to have a role in the way we differ-
ently perceive self-generated actions or actions performed
by other subjects. One of the proposals that explains this
phenomenon (Blakemore et al., 2000a,b) says that when we
perform a motor action, an efferent copy of the motor com-
mands that our brain sends to our muscles would be used in
a predictive process that anticipates the sensory outcomes of
the movement. Such predictions would be then compared
to the actual sensory consequences and, if the two corre-
spond, the perceived sensory consequences are attenuated.

This would enable a differentiation between self-generated
sensory events and those externally generated that are not
mapped to any internally generated efferent copy of the mo-
tor commands (Blakemore et al., 2000a). The existence of
such a self-monitoring mechanism would explain, for exam-
ple, why tickling sensations cannot be self-produced (Blake-
more et al., 2000b), why people are better at recognising
themselves than others when watching movies of only point-
light walkers (Casile and Giese, 2006), why people are more
accurate in predicting the landing point of a thrown dart
from a video screen when they observe their own throw-
ing action than when observing another person’s throwing
action (Knoblich and Flach, 2001), or why people perceive
the loudness of sounds as less intensive when they are self-
generated, than when they are generated by other persons or
by a software (Weiss et al., 2011). In this latter study on
selective attenuation of self-generated sounds, the authors
proposed that the experience of perceiving actions as self-
generated would be caused by the anticipation and, thus, the
attenuation of the sensory consequences of such motor com-
mands, which would be related to ”the privileged access to
internally generated efferent information during one’s own
action” (Weiss et al., 2011). The sense of agency, that is the
pre-reflective experience that we are the owner of an action
we are executing, is thus proposed to be dependent on the
degree of congruence vs. incongruence between predicted
and actual sensory consequences of our bodily actions.

In the investigation on sensorimotor simulation processes
in the human brain, internal forward and inverse models
have been proposed (Wolpert et al., 2001). A forward model
(illustrated in Figure 1) - or predictor, as firstly proposed
in the control literature as a means to overcome problems
such as the delay of feedback in control strategies (Jordan
and Rumelhart, 1992) - incorporates knowledge about sen-
sory outcomes of self-generated actions. Inverse models
(illustrated in Figure 2) - or controllers, as they were ini-
tially proposed for implementing inverse kinematics pro-
cesses for controlling robotic manipulators - perform the op-
posite transformation providing a system with the necessary
motor command to go from an initial sensory situation to
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Figure 1: An illustration of the forward model (predictor).
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Figure 2: An illustration of the inverse model (controller).

a desired one. Such models encode the dynamics of the
motor system and can provide artificial agents with multi-
modal representations, as they fuse together sensory and mo-
tor information (Wilson and Knoblich, 2005), and with the
capability to predict sensorimotor activities based on pre-
vious experience. Studies such as the ones reported above
shed light on the importance that predicting sensory conse-
quences of self-generated actions have for basic motor tasks
and cognitive skills. Equipping artificial agents with simi-
lar computational processes has been shown to be a promis-
ing approach in the development of different skills, such
as navigation (Möller and Schenck, 2008; Escobar et al.,
2012), perception of the functional role of objects (Kaiser,
2014), action selection and tool-use (Schillaci et al., 2012)
and sense of agency (Pitti et al., 2009).

The work presented here adopts a biologically inspired
framework for internal body representations (Schillaci et al.,
2014) that can enable a robot with the capability to perform
simulations of sensorimotor activities based on previous ex-
perience. Inspired by human development, the learning of
this body representation is intertwined with the interaction
experience of the robot with the external environment.In par-
ticular, we frame this work into the context of one of the
biggest - and most unexplored - challenges of robot audi-
tion, the artificial capability of listening, that is the pres-
ence of ego-noise, or the noise that the robot generates while
moving around. Being able to estimate self-induced changes
in the auditory signal is not only crucial for attenuating the
noise, and thus for enhancing the auditory signal for further
processing such as speech recognition, but also for distin-
guishing ego-noise from other sounds in natural acoustic en-
vironments, which is a prerequisite for efficient and intuitive
interaction with other people and with the surrounding.

We demonstrate the predictive capabilities of the model in
the auditory domain in two tasks. Firstly, we introduce the
framework in a simple classification task, where the robot
has to recognize a behaviour that it executes based on the
comparison of the produced ego-noise to internal simula-
tions of ego-noise produced by intended actions. We show
also how our model can deal with the situation when input
information are missing, for example by simulating a dam-
age in the system, resulting in the model still being able to
classify, although with poorer performance. Secondly, we

show how the proposed framework, and the predictive capa-
bilities that it provides, could serve as a basis for the devel-
opment of a sense of agency in artificial agents. In particular,
we report an experiment on ego-noise attenuation based on
sensorimotor predictions, where the quality of the attenua-
tion is dependent on the degree of congruence vs. incongru-
ence between predicted and actual sensory consequences of
self-generated actions. In line with the behavioural studies
reported above, we show that prediction errors generated by
internal sensorimotor simulations are smaller when the pro-
prioceptive information is coherent with the events that are
perceived from the external environment. Simply put, we
show that sensory attenuation is more pronounced when the
robot is the owner of the action, and we argue that this could
serve as a cue for self-agency in artificial agents.

In the rest of the paper we firstly introduce the framework
presented in (Schillaci et al., 2014) and extend it. Therefore,
we illustrate and discuss the experiments mentioned above.
Finally, we draw the conclusions and the outlines of future
work.

An Internal Body Representation for a
Humanoid Robot

Evidences from behavioural sciences and neuroscience sug-
gest that motor and brain development are strongly inter-
twined with the experiential process of exploration, where
internal body representations would be formed and main-
tained over time (Cang and Feldheim, 2013). Kaas (1997)
reported the existence of topographic maps in the visual, au-
ditory, olfactory and somatosensory systems, as well as in
parts of the motor brain areas. Researchers proposed that
such maps would self-organise throughout the brain devel-
opment and along the sensorimotor experience of the in-
dividual with the external environment. They would func-
tion as projections of sensory receptors and of effector sys-
tems, and are arranged in a way that adjacent regions pro-
cess spatially close sensory parts of the body. Many stud-
ies supported the existence of an integrated representation
of visual, somatosensory, and auditory peripersonal space in
human and non-human primates (see for example Holmes
and Spence (2004)), suggesting that the brain maintains in-
tegrated multimodal representations, which are essential for
sensorimotor control (Maravita and Iriki, 2004).

During the last couple of decades, interest in the possibil-
ity to develop models inspired by the mechanisms of human
body representations has been growing also in the robotics
community. In robot audition, for example, Ince and col-
leagues investigated methods for learning, predicting and
suppressing robot ego-noise (Ince et al., 2009). The authors
built up an internal body representation of a humanoid robot
consisting in motor sequences mapped to the recorded motor
noises and their spectra. This resulted in a large noise tem-
plate database that was then used for ego-noise prediction
and subtraction.



Here, we report an implementation of a biologically in-
spired model for body representations that can encode expe-
rience gathered through sensorimotor learning and that can
generate predictions of auditory and motor states. In par-
ticular, we propose an internal models framework consist-
ing of connected neural networks that simulate distinct sen-
sorimotor brain areas. The internal model encodes sensory
and motor modalities as topographic maps that self-organise
throughout the interaction of the robotic agent with the ex-
ternal environment. Moreover, a parallel intermodal map-
ping is performed: sensory and motor maps are connected
through Hebbian links that are strengthened when an occur-
rence of multi-modal activity is observed.

The model architecture is inspired by the Epigenetic
Robotics Architecture (Morse et al., 2010), where a struc-
tured association of multiple Self-Organising Maps (SOMs)
(Kohonen, 1982) is adopted for mapping different sensori-
motor modalities in a humanoid robot, and it is based on
similar works we previously published (Kajić et al., 2014;
Schillaci et al., 2014). Self-organising maps have the advan-
tage of producing low-dimensional and discretised represen-
tations of the input space of the training samples.

In the proposed model, multiple SOMs, each representing
a sensory or motor modality, are associated through unidi-
rectional Hebbian links: each node of the input map is con-
nected to a each node of the output map, where the con-
nection is characterised by a weight. The weight is up-
dated according to a positive Hebbian rule that simulates
synaptic plasticity of the brain: the connection between a
pre-synaptic neuron (a node in the input map) and a post-
synaptic neuron (a node in the output map) increases if
the two neurons are simultaneously activated. Learning of
the internal model consists in updating the SOMs and the
Hebbian connections with sensory and motor data gathered
through an exploration behaviour executed by the robot.
During the execution of the robot movements, sensory and
motor data are provided as training inputs to the correspond-
ing maps in an online fashion. A SOM is constructed as a
grid of neurons, where each neuron is represented as an n-
dimensional weight vector wi (Kajić et al., 2014; Kohonen,
1982). The number of dimensions of a weight vector cor-
responds to the dimensionality of the input data. Weights
in the network are initially set to random values and then
adjusted iteratively by presenting the input vector xp. In
each iteration, the winning neuron i is selected as a neuron
whose weights are closest to the input vector in terms of the
Euclidean distance. After selecting a winning neuron, the
weights of all neurons are adjusted:

∆wj = η(t)h(i, j, t)(wj − xp) (1)

The parameter η(t) is a learning rate which defines the
speed of change. The function h(i, j, t) is a Gaussian neigh-

borhood function defined over the grid of neurons as:

h(i, j, t) = e

(
w2

i −w2
j

2πσ(t)2

)
(2)

The learning rate η(t) and the spread of the Gaussian
function σ(t) are held constant for a certain time interval,
and are annealed exponentially afterwards.1 The function is
centered around the winning neuron i and its values are com-
puted for all neurons j in the grid. The spread of the func-
tion determines the extent to which neighbouring weights of
a winning neuron are going to be affected in the current iter-
ation. The topology of the network is preserved by pulling
together neurons towards the winning node.

After every update of the SOMs, the Hebbian links con-
necting each pair of maps are updated as well. The Hebbian
update corresponds to the following steps. For mapping an
input map (e.g. the motor map) to an output map (e.g. the
auditory map):

- select the pre-synaptic neuron (winner node) as the closest node
i in the input map to the current input pattern x (e.g. the joint
rotation);

- select the post-synaptic neuron (winner node) as the closest node
j in the output map to the current output pattern y (e.g. the robot
ego-noise);

- strengthen the connectionwij between the pre and post-synaptic
neurons according to the modified positive Hebbian rule:

∆wij = λAi(x)Aj(y) (3)

whereAi(x) is the activation function of the neuron i over
the Euclidean distance between the neural weights and the
data pattern x, λ is a scaling factor for slowing down the
growth of the weights (in the experiments presented here, it
is initialised to 0.1). The activation function of a neuron,
A(d), is computed as:

A(d) =
1

1 + 2 ∗ tanh(d)
(4)

where d is the normalised Euclidean distance between the
position of the node and the input pattern.

After the update, a normalisation is performed on all the
links from the input map converging to a node in the out-
put map, for each node in the output map, as described by
Miikkulainen (1990). Such a normalisation implements a
forgetting process, since it strengthens the updated link and
it weakens all the other connections. The same process is
performed on the unidirectional links connecting each pair
of maps in the model in both directions.

The trained model can be used for performing sensory and
motor predictions. Predictive processes can be activated by

1In the experiments presented in the the following section, we
set η = 0.9 and σ = 0.7.



querying the model with partial or full sensorimotor infor-
mation. For example, we can infer the ego-noise produced
by the execution of a specific motor command (forward pre-
diction) from the model depicted in Figure 3 by querying
the model with an input to the proprioceptive map, consist-
ing of the joints configuration of the robot, and an input to
the motor map, consisting of the joints rotations, which are
therefore propagated to the auditory map. In fact, a predic-
tive system based on propagation of signals between maps
has been implemented. The propagation of signals works as
follows. Given a sensory or motor input:

• Find the winner node w and its k neighbors (k set to 5, in the
experiments presented here) in the corresponding map, as the
closest node to the input, and calculate its activation using the
activation function described in (4);

• Propagate the activation of the nodes in the winners list of the
input map to all the nodes in the output map connected to it.
The propagated value to each node in the output map is equal to
the activation of the selected node in the input map multiplied
by the weight of the Hebbian link connecting the selected node
in the input map to the corresponding node in the output map;
multiple propagations to the same node in the output map are
summed up;

• Compute the prediction in the output modality as the weighted
average of the positions of the nodes in the output map, each
weighted by the incoming propagation.

If an observation of the output modality is available, a
prediction error can be computed as the distance between
the predicted outcome and the observation.

Moreover, multiple propagations can be executed from
different input modalities to the same output modality, as il-
lustrated in Figure 3. From each input modality, signals can
be spread out to the desired output modality as described
above. Thus, incoming propagations onto the output map
can be summed up and a prediction can be computed as
the weighted average of the nodes’ positions multiplied with
their activations.

Auditory Map

Figure 3: An example of a forward model consisting of three
maps.

Figure 3 illustrates a forward model (as described in Fig-
ure 1) implemented using the proposed architecture com-
posed of three SOMs: a proprioceptive map, encoding the

initial joint configuration of the robot, a motor map, i.e. en-
coding the rotation applied to the joints from the initial po-
sitions, and an auditory map, encoding the noise produced
by the movements. An inverse model can be implemented
with two sets of directional Hebbian links: the first starting
from the proprioceptive map and ending to the motor map,
and the second starting from the acoustic map and ending to
the motor map.

Ego-noise representation
We represent the ego-noise produced by the robot move-
ments using Mel-frequency cepstral coefficients (MFCCs),
which are features derived from a type of cepstral repre-
sentation of the auditory signal commonly used in speech
recognition (Sahidullah and Saha, 2012).

In this work, MFCC features are derived performing the
following steps:

- Calculate the Fourier transform of an audio chunk extracted
from the input signal. In the experiments reported here, we used
a single channel audio signal, recorded from the robot with sam-
pling rate of 48 kHz. Audio chunks of 40 ms are extracted from
the signal using a rectangular window. Chunks are extracted ev-
ery 20 ms (that is, with a 50% overlapping between subsequent
chunks). FFT size is 2048 samples. 32 triangular overlapping
filters are used in the Mel filterbank, with a mel filter width of
200. The frequency range of the filterbank goes from 0 to 16
kHz;

- Apply the Mel filterbank to the power of the spectrum and sum
the energy in each filter;

- Calculate the Discrete Cosine Transform of the logarithm of the
filterbank energies;

- Keep the first 26 or 32 coefficients of the DCT as MFCC fea-
tures.

For implementing the MFCC feature extraction process,
we adopted and extended an existing open source and cross-
platform digital signal processing library, named Aquila
DSP (http://aquila-dsp.org/).

Before being processed, input data streams are aligned
in time, to ensure that the auditory stream matches the ac-
tions executed by the robot. We use the NAOqi and exper-
imental NAOqi-Modularity frameworks provided by Alde-
baran Robotics, which allow us to combine asynchronous
data collection and data processing using filter chains in the
humanoid robot Nao.

Experiments
We report here two experiments. Firstly, we present a simple
classification experiment with the aim of demonstrating the
learning and predictive capabilities that the proposed model
can provide to artificial agents. In particular, we adopt the
proposed framework for allowing a humanoid robot to learn
the ego-noise that it is producing when performing a mo-
tor behaviour consisting of periodical horizontal head rota-
tions (see Figure 4). Thus, we implement a classification



Figure 4: The robot behaviour executed during the recordings consisted in periodical rotations of the head on the yaw axis.
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Figure 5: Example of trajectories of synchronised audio-motor data from the four velocity profiles. The upper plot shows the
trajectories of the first 4-MFCC coefficients extracted from the single channel auditory signal recorded while executing the
head rotations. The plot in the bottom shows the head yaw joint position (red line) and the head yaw rotation over 40ms (green
line). The columns represent the different velocity profiles. From left to right: slow, medium, fast and very fast.

experiment where the robot has to classify a behaviour it is
executing in terms of velocity profile, by comparing the pro-
duced ego-noise to simulations of the ego-noise produced by
imaginary executions of all the behaviours in the repertoire.
In addition, we show how the model can deal with the situ-
ation when input information are missing, for example due
to a damage in the system, resulting in the model still being
able to classify, although with poorer performance.

Secondly, we describe an experiment on ego-noise atten-
uation with the aim of showing that the computational pro-
cesses implemented by our framework resemble those pro-
posed by the behavioural studies mentioned in the intro-
duction of this work, which would explain the mechanisms
behind the sense of agency (Weiss et al., 2011; Blakemore
et al., 2000a). In particular, we report an experiment on ego-
noise attenuation based on sensorimotor predictions, where
the quality of the attenuation is dependent on the degree of
congruence vs. incongruence between predicted and actual
sensory consequences of self-generated actions. In line with
the behavioural studies reported above, we show that predic-
tion errors generated by internal sensorimotor simulations
are smaller when the proprioceptive and motor information
are coherent with the events that are perceived from the ex-
ternal environment. We reported similar results in a different
robotic experiment in the context of visuo-motor coordina-
tion (Schillaci et al., 2013).

Ego-noise classification
In the first experiment, we trained four different models
with sensorimotor data gathered while executing a robot be-
haviour consisting of periodical horizontal head rotations
with four different velocity profiles. We implemented the
four velocity profiles using the original Aldebaran NAOqi
controller with gradually increasing velocity thresholds,
here named as slow, medium, fast and very fast. Figure
5 shows sample trajectories of aligned auditory and motor
training data for each of the four velocity profiles. Training
of the models has been tested online and runs in real-time on
an Aldebaran Nao v.5 robot. However, the classification re-
sults reported here are taken from models trained and tested
offline. Sensorimotor data was gathered from the robot exe-
cuting for ca. 200 seconds each of the four velocity profiles,
resulting in 9449 training samples for the slow velocity pro-
file, 9449 for the medium, 9459 for the fast and 9459 for the
very fast. Each training sample consisted of the following
sensorimotor information:

- S(t): MFCC features extracted from a single audio chunk (see
Section ”Ego-noise representation” for more details);

- S(t-1): initial position of the head yaw joint, that is the closest
position in time to the first audio sample of the MFCC chunk;

- M(t-1): rotation of the head yaw joint over 40 ms, from S(t-1).



Four internal models have been trained with the different
datasets (slow, medium, fast and very fast velocity profiles).
Each internal model consisted of three maps (see Figure 3):
a proprioceptive map, encoding a mono-dimensional feature
space representing the initial head yaw joint position, that
is S(t − 1); a motor map, encoding a mono-dimensional
feature space representing the head yaw joint rotation, that
is the motor command M(t − 1); an auditory map, encod-
ing a 26-dimensional MFCC feature space representing the
robot ego-noise. Each internal model encoded both the in-
verse and the forward models, as these are implemented by
the Hebbian tables containing the proper directional links,
as explained in the previous section. Each SOM consisted
of a 10x10 lattice of nodes, whose weights are randomly ini-
tialised and sampled from a Gaussian distribution N (0, 1).
The weights of the Hebbian links connecting each pair of
SOMs were all initialised to 0.

The classification task consisted in feeding the four inter-
nal models (slow, medium, fast and very fast) with test data
samples gathered from the different datasets which stored
sensorimotor data produced with each of the four velocity
profiles, and in comparing the predicted auditory outcome
with the actual one. Auditory chunks are classified as the ve-
locity profile belonging to the forward model that produced
the smallest prediction error (calculated as the Euclidean
distance between the predicted and the observed MFCCs).
Figure 6 illustrates the classification process using internal
simulations.
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Figure 6: Diagram of the classification process.

Classification performance was measured for each trained
model and on 5 different runs (thus, different test datasets).
Table 1 shows the confusion matrix for the best run, when
using only forward predictions with full input information.

Classified as
Slow Medium Fast Very fast # samples

Executed
velocity

Slow 94,00% 5,50% 0,50% 0,00% 200
Medium 6,00% 89,50% 4,00% 0,50% 200

Fast 0,50% 14,00% 85,5% 0,00% 200
Very Fast 4,00% 4,50% 7,50% 84,00% 200

Table 1: Confusion matrix showing the performance of the
classification using only forward predictions.

Thus, we simulated a damage in the system, which was
implemented as a lack of proprioceptive and motor infor-
mation, during the predictive process. Internal simulations
with partial inputs - in this case, only the auditory modality
- were performed. The first step consisted in estimating a
prediction of the motor command needed to generate the au-
ditory outcome specified as input to the model, using an in-
verse prediction. The predicted motor command is thus fed
into the corresponding forward model, which anticipates the
sensory outcome of the intended action. Table 2 shows the
confusion matrix of the best of 5 classification runs, where
we executed full internal simulations using only partial in-
formation as input. As expected, predictions estimated with
missing proprioceptive inputs produced a degradation of the
classification performace. However, the system is still able
to classify correctly with at least 50% success.

Classified as
Slow Medium Fast Very fast # samples

Executed
velocity

Slow 85,5% 11,50% 2,50% 0,50% 200
Medium 7,50% 77,50% 13,00% 2,00% 200

Fast 1,00% 16,00% 80,0% 3,00% 200
Very Fast 1,50% 7,50% 37,00% 54,00% 200

Table 2: Confusion matrix showing the performance of the
classification using both the inverse and forward predictions
with missing input data (proprioceptive joints information).

Ego-noise attenuation as a cue for sense of agency
We performed a second experiment on ego-noise attenua-
tion based on ego-noise predictions. In the experiment, we
simulated that the robot is listening to a ego-noise signal
(previously recorded from the robot itself) and, in the mean-
while, performing a motor behaviour. Along these move-
ments, a forward model - trained with a periodical head ro-
tation behaviour with slow velocity profile, as in the previ-
ous experiment - was used in executing sensorimotor simu-
lations aimed at predicting the robot ego-noise generated by
the current motor behaviour of the robot. We tested three
conditions. In the first one, we simulated that the robot is
executing a motor behaviour that is coherent with the ob-
served ego-noise. In a second one, we simulated that the
robot is not moving, thus holding the head in an initial po-
sition (applying a null motor command). In a third condi-
tion, we simulated that the robot is performing a periodical
head rotation that is not aligned in time with the observed
ego-noise. In each of the three conditions, we predicted the
auditory outcomes of the movements by feeding the forward
model with the joints information corresponding to the cur-
rent motor behaviour. Thus, we subtracted from the original
auditory information the one of the estimated noise.

Ego-noise suppression is performed in the log-filterbank
energies domain. An inverse DCT (Discrete Cosine Trans-
form) is applied to the 32-MFCC feature vectors represent-
ing the predicted and actual ego-noise chunks, producing



two 32-D vectors (log-filterbank energies). Therefore, the
vector representing the predicted ego-noise is subtracted
from the one representing the actual ego-noise. In the event
that the subtraction result in a dimension is negative, spectral
flooring is applied, that is the attenuated signal is computed
as the original one multiplied with a factor of 0.1.

Figure 7 qualitatively illustrates the results of the ego-
noise attenuation. As evident from the plots, ego-noise at-
tenuation is more pronounced when the input data fed to
the forward model is coherent with the auditory output (left
graphs in the Figure - dark blue colour corresponds to total
suppression of the ego-noise). The quality of the attenua-
tion is worse, when there is incongruence between predicted
and actual sensory consequences of self-generated actions,
as in the case of the second and third condition. In particu-
lar, the second behaviour (head holding an initial position)
generates a constant ego-noise prediction. The difference
between the original and predicted ego-noise (bottom row,
central column) is thus higher than in the case when the mo-
tor behaviour matches the observed ego-noise. Same effect
is observed in the third condition, where the motor behaviour
does not match the observed ego-noise.

In line with the studies reported in the introduction of this
study, our experiment shows that prediction errors generated
by sensorimotor simulations are smaller when the propri-
oceptive and motor information are coherent with the per-
ceived ego-noise. Simply put, sensory attenuation is more
pronounced when the robot is the owner of the action, as it
has ”a privileged access to internally generated efferent in-
formation during its own action” (Weiss et al., 2011), as sim-
ulated in the first condition of this experiment. The second
and third condition simulated the situation where the robot
is listening to another artificial agent performing a period-
ical horizontal head rotation behaviour, that sounds exactly
as it would have been produced by the robot itself. However,
the fact that the observed proprioceptive and motor informa-
tion were incoherent with the observations of the ego-noise
did constitute an element of surprise, as the forward model
fed with such input data produced worse ego-noise predic-
tion than in the first condition of the experiment - as evident
from the bigger prediction errors illustrated in Figure 7, bot-
tom plots of the second and third columns.

Conclusion
We presented an implementation of a biologically inspired
model for coding internal body representations that can gen-
erate predictions of auditory and motor experiences. The
predictive capabilities provided by the models are tested
in two experiments: a simple ego-noise classification task,
where we also showed the capabilities of the model to pro-
duce predictions even in the absence of input modalities; an
ego-noise suppression experiment, where we showed the ef-
fects in the ego-noise prediction, and thus suppression, per-
formance of the input data to the forward model, when they

are coherent or incoherent with the auditory observations.
In line with the behavioural studies reported in the introduc-
tion of this study, our experiment shows that prediction er-
rors generated by sensorimotor simulations are smaller when
the proprioceptive and motor information are coherent with
the perceived ego-noise. Simply put, sensory attenuation is
more pronounced when the robot is the owner of the action.
When this is not the case, sensory attenuation is worse, as
the incongruence of the proprioceptive and motor informa-
tion with the perceived ego-noise generates bigger predic-
tion errors, which may constitute an element of surprise for
the agent and allow it to distinguish between self-generated
actions and those generated by other individuals. Therefore,
we argue that equipping artificial agents with internal body
representations and with the capability to perform sensori-
motor predictions based on previous experience can repre-
sent a promising research direction towards the development
of a sense of agency in artificial systems.
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Figure 7: Ego-noise prediction and suppression tests. In the left graphs, input joint states and motor commands are coherent
with the auditory outcome of the movements. In middle and right graphs, these inputs to the forward models are not coherent
with the auditory information. In particular, in the middle graph the head is in a idle position (random joint position and motor
command equals to 0); in the right graphs, joint and motor values follow periodical head movements shifted in time, compared
to the actual auditory signal. In each of the three tests, the upper plots show the Mel log-filterbank energies extracted from
the original auditory signal. The plots in the central row show predicted log-filterbank energies, where the input state and
motor information vary according to the test. The bottom plots show the output of the ego-noise suppression (predicted signal
subtracted from the original one).
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